Максимальное количество хромосом у живого организма. Сколько хромосом у различных животных. Кому выгодно быть неправильным

Рассматривая наш организм на клеточном уровне, обязательно наталкиваешься на его структурную единицу - хромосому. Именно в ней содержатся гены. С греческого это понятие дословно можно перевести как «окраска тела». Почему такое странное название? Дело в том, что во время деления клетки структурные единицы могут окрашиваться при взаимодействии с натуральными красителями. Хромосома является ценным носителем информации. Поэтому когда у человека формируется неправильное количество хромосом, это говорит о патологическом процессе.

Вконтакте

Норма для здорового человека

Если верить последней статистике , 1% новорожденных сегодня рождается с отклонениями на физиологическом уровне, когда появляется недостаточное количество хромосом. Эта проблема уже становится глобальной, чем вызывает сильную озабоченность у врачей. У здорового человека (мужчина или женщина) насчитывается 46 хромосом, то есть 23 пары. Интересен тот факт, что до 1996 года у ученых не было сомнений, что пар структурных единиц не 23, а 24. Ошибка была допущена Теофилусом Пейнтером, известным в своем круге ученым. Ее нашли и исправили два других светила - Альберт Леван и Джо-Хин Тьо.

Все хромосомы имеют одинаковые морфологические признаки, но половые и соматические клетки обладают разным набором структурных единиц. В чем же состоит это различие?

Когда происходит деление клеток (то есть их количество начинает удваиваться), наблюдаются изменения хромосом на морфологическом уровне. Но, несмотря на то что в нашем организме происходят столь сложные процессы, количество хромосом у человека все равно остается одинаковым - 46. От того, сколько пар хромосом у человека должно быть, зависит его интеллектуальное развитие и общее здоровье. Именно поэтому для врачей очень важно обращать внимание на этот вопрос еще в процессе планирования беременности. Часто гинеколог рекомендует молодым парам обратиться к генетику, который проведет некоторые важные клинические исследования.

При зачатии одну из единиц в паре человек получает от биологической матери, а вторую - от биологического отца. А вот от 23-й пары зависит пол будущего малыша . Во время изучения кариотипа человека важно пояснить, что хромосомный набор здоровых людей состоит из 22 аутосом, а также одной мужской и одной женской хромосомы (так называемые половые). Кариотип человека можно без особых проблем определить с помощью простого изучения совокупности признаков этих единицы в одной клетке. Если будет найдено какое-либо нарушение в кариотипе, человека ждут большие неприятности со здоровьем.

Проблем на уровне генов может быть несколько. И все они рассматриваются отдельно, ведь имеют разную клиническую картину. Ниже представлены только те патологии, которые современная медицина может успешно вылечить после того, как родился больной ребенок:

Эти показания считаются отклонением от нормы и их можно определить еще во время внутриутробного развития. Если существует возможного того , что ребенок родится с серьезными проблемами, врачи часто рекомендуют беременной женщине сделать аборт. В противном случае женщина обрекает себя на жизнь с инвалидом, которому будет необходимо дополнительное воспитание.

Нарушения в наборах хромосом

Иногда количество пар не соответствует стандарту. Проблему во внутриутробном развитии может заметить только генетик, если будущая мама добровольно пройдет исследование. Если количество нарушено, то выделяют такие заболевания:

  1. Синдром Клайнфельтера.
  2. Болезнь Дауна.
  3. Синдром Шерешевского-Тернера.

Консервативных методов для восполнения недостающего генетического ряда не существует на сегодняшний день. То есть подобный диагноз считается неизлечимым. Если проблема была диагностирована во время беременности, лучше всего ее прервать. В противном случае появляется больной ребенок с возможными внешними уродствами.

Болезнь Дауна

Впервые это заболевание было диагностировано еще в XVII столетии. В то время определение количества хромосом у здорового человека было крайне проблематичным занятием. Поэтому количество больных новорожденных было по-настоящему пугающим. На 1000 младенцев двое рождались с синдромом Дауна. Через некоторое время болезнь была изучена на генетическом уровне, что позволило определить, как меняется хромосомный набор.

При синдроме Дауна к 21 паре прикрепляется еще одна. То есть, общее количество составляет не 46, а 47 хромосом. Патология формируется спонтанно, а ее причиной может быть сахарный диабет, пожилой возраст родителей, повышенная доза радиации, наличие некоторых хронических заболеваний.

Внешне такой ребенок отличается от здоровых сверстников. У него узкий и широкий лоб, объемный язык, большие уши, сразу бросается в глаза умственная отсталость. Также у пациента диагностируются другие проблемы со здоровьем, которые затрагивают многие внутренние системы и органы.

По большому счету хромосомный ряд будущего малыша сильно зависит от генома его матери. Именно поэтому перед началом планирования беременности необходимо пройти полноценное клиническое обследование. Оно позволит определить скрытые проблемы . Если врачи не обнаружат противопоказаний, можно думать о зачатии ребенка.

Синдром Патау

При этом нарушении наблюдается трисомия в тринадцатой паре структурных единиц. Такое заболевание встречается намного реже, чем синдром Дауна. Оно возникает, если присоединяется лишняя структурная единица или нарушается структура хромосом и их перераспределение.

Существует три основных симптома , по которым диагностируют данную патологию:

  1. Уменьшенные размеры глаз или микрофтальм.
  2. Увеличенное количество пальцев (полидактилия).
  3. Расщелина неба и губы.

При таком заболевании около 70% младенцев вскоре после рождения (до трех лет) умирают. Часто у детей с синдромом Патау диагностируют пороки сердца, а также головного мозга, проблемы со многими внутренними органами.

Синдром Эдвардса

Эта патология характеризуется наличием трех хромосом в восемнадцатой паре. Вскоре после рождения большая часть младенцев умирает. Они рождаются с ярко выраженной гипотрофией (не могут набрать вес из-за проблем с пищеварением). У них низко расположенные уши, широко поставленные глаза. Часто диагностируются пороки сердца.

Чтобы не допустить развития патологии, рекомендовано всем родителям, которые решают зачать ребенка после 35 лет, пройти специальные обследования. Также большая вероятность развития заболеваний у тех, чьи родители имели проблемы со щитовидной железой.

Термин хромосомы впервые предложен В. В ядрах интерфазных клеток выявить тела хромосом с помощью морфологических методов очень трудно. Собственно хромосомы как четкие плотные хорошо видимые в световой микроскоп тела выявляются только незадолго перед клеточным делением.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция №6

ХРОМОСОМЫ

Хромосомы – это основная функциональная авторепродуцирующая структура ядра, в которой концентрируется ДНК и с которой связаны функции ядра. Термин «хромосомы» впервые предложен В.Вальдейером в 1888 г.

В ядрах интерфазных клеток выявить тела хромосом с помощью морфологических методов очень трудно. Собственно хромосомы как четкие, плотные, хорошо видимые в световой микроскоп тела выявляются только незадолго перед клеточным делением. В самой же интерфазе хромосом как плотных тел не видно, так как они находятся в разрыхленном, деконденсированном состоянии.

Число и морфология хромосом

Число хромосом постоянно для всех клеток данного вида животных или растений, но значительно колеблется у различных объектов. Оно не связано с уровнем организации живых организмов. Примитивные организмы могут иметь много хромосом, а высокоорганизованные – гораздо меньше. Например, у некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева. Приведем примеры количественного содержания хромосом у некоторых организмов: речной рак – 196, человек – 46, шимпанзе – 48, пшеница мягкая – 42, картофель – 18, дрозофила – 8, муха домашняя – 12. Наименьшее количество хромосом (2) наблюдается у одной из рас аскариды, у сложноцветного растения гаплопапус всего 4 хромосомы.

Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов, водорослей, очень мелкие хромосомы – у льна и морского камыша; они настолько малы, что с трудом видны в световой микроскоп. Наиболее длинные хромосомы обнаружены у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм. Толщина хромосом колеблется от 0,2 до 2 мкм.

Морфологию хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы животных и растений в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки , которая делит хромосому на два плеча . В области первичной перетяжки расположена центромера, или кинетохор . Это пластинчатая структура, имеющая форму диска. Она связана тонкими фибриллами с телом хромосомы в области перетяжки. Кинетохор плохо изучен в структурном и функциональном отношениях; так, известно, что он является одним из центров полимеризации тубулинов, от него отрастают пучки микротрубочек митотического веретена, идущие в направлении к центриолям. Эти пучки микротрубочек принимают участие в движении хромосом к полюсам клетки при митозе. Некоторые хромосомы имеют вторичную перетяжку . Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок – спутник . Размеры и форма спутника постоянны для каждой хромосомы. Размер и протяженность вторичных перетяжек также весьма постоянны. Некоторые вторичные перетяжки представляют собой специализированные участки хромосом, связанные с образованием ядрышка (ядрышковые организаторы), остальные не связаны с формированием ядрышка и их функциональная роль не до конца выяснена. Плечи хромосом оканчиваются конечными участками – теломерами. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков (в результате разрывов), которые могут присоединяться к таким же разорванным концам других хромосом.

По расположению первичной перетяжки (центромеры) выделяют следующие типы хромосом:

1. метацентрическая – центромера расположена посередине, плечи равной или почти равной длины, в метафазе приобретает V -образную форму;

2. субметацентрическая – первичная перетяжка слегка сдвинута к одному из полюсов, одно плечо немного длиннее другого, в метафазе имеет L -образную форму;

3. акроцентрическая – центромера сильно сдвинута к одному из полюсов, одно плечо гораздо длиннее другого, в метафазе не перегибается и имеет палочковидную форму;

4. телоцентрическая – центромера располагается на конце хромосомы, но такие хромосомы в природе не обнаружены.

Обычно каждая хромосома имеет только одну центромеру (моноцентрические хромосомы), но могут встречаться хромосомы дицентрические (с 2-мя центромерами) и полицентрические (обладающие множеством центромер).

Встречаются виды (например, осоки), у которых хромосомы не содержат видимых центромерных участков (хромосомы с диффузно расположенными центромерами). Они называются ацентрическими и не способны совершать упорядоченное движение при делении клетки.

Химический состав хромосом

Основными компонентами хромосом являются ДНК и основные белки (гистоны). Комплекс ДНК с гистонами – дезоксирибонуклеопротеид (ДНП) – составляет около 90% массы как изолированных из интерфазных ядер хромосом, так и хромосом делящихся клеток. Содержание ДНП постоянно для каждой хромосомы данного вида организма.

Из минеральных компонентов наибольшее значение имеют ионы кальция и магния, которые придают хромосомам пластичность, и их удаление делает хромосомы очень хрупкими.

Ультраструктура

Каждая митотическая хромосома сверху покрыта пелликулой . Внутри находится матрикс , в котором расположена спирально завитая нить ДНП, толщиной 4-10 нм.

Элементарные фибриллы ДНП – это основная составная часть, которая входит в структуру митотических и мейотических хромосом. Поэтому, чтобы понять устройство таких хромосом, необходимо знать, как эти единицы организованы в составе компактного тела хромосом. Интенсивное изучение ультраструктуры хромосом началось в середине 50-х годов прошлого столетия, что связано с внедрением в цитологию метода электронной микроскопии. Существуют 2 гипотезы организации хромосом.

1). Унинемная гипотеза утверждает, что в хромосоме находится только одна двунитчатая молекула ДНП. Эта гипотеза имеет морфологические, авторадиографические, биохимические и генетические подтверждения, что делает эту точку зрения наиболее популярной на сегодняшний день, так как хотя бы для ряда объектов (дрозофила, дрожжевые грибы) она является доказанной.

2). Полинемная гипотеза состоит в том, что несколько двунитчатых молекул ДНП объединяются в пучок – хромонему , а, в свою очередь, 2-4 хромонемы, скручиваясь, образуют хромосому. Практически все наблюдения полинемности хромосом были сделаны при помощи светового микроскопа на ботанических объектах с крупными хромосомами (лилии, различные луки, бобы, традесканция, пион). Возможно, что явления полинемии, которые наблюдались на клетках высших растений, характерны лишь для этих объектов.

Таким образом, не исключено, что есть несколько разных принципов структурной организации хромосом эукариотических организмов.

В интерфазных клетках многие участки хромосом деспирализованы, что связано с их функционированием. Они называются эухроматин. Считается, что эухроматические участки хромосом активны и содержат весь основной комплекс генов клетки или организма. Эухроматин наблюдается в виде мелкой зернистости или вообще не различим в ядре интерфазной клетки.

При переходе клетки от митоза к интерфазе определенные зоны различных хромосом или даже целые хромосомы остаются компактными, спирализованными и хорошо окрашиваются. Эти зоны получили название гетерохроматин . Он присутствует в клетке в виде крупной зернистости, глыбок, хлопьев. Гетерохроматические участки обычно располагаются в теломерных, центромерных, околоядрышковых районах хромосом, но могут входить и в состав их внутренних частей. Утеря даже значительных участков гетерохроматических районов хромосом не приводит к гибели клетки, так как они не активны и их гены временно или постоянно не функционируют.

Матрикс – это компонент митотических хромосом растений и животных, освобождающийся при деспирализации хромосом и состоящий из фибриллярных и гранулярных структур рибонуклеопротеидной природы. Возможно, роль матрикса заключается в переносе хромосомами РНК-содержащего материала, который необходим как для образования ядрышек, так и для восстановления собственно кариоплазмы в дочерних клетках.

Хромосомный набор. Кариотип

Постоянство таких признаков, как величина, местоположение первичной и вторичной перетяжек, наличие и форма спутников, определяет морфологическую индивидуальность хромосом. Благодаря такой морфологической индивидуальности, у многих видов животных и растений удается распознавать любую хромосому набора в любой делящейся клетке.

Совокупность числа, величины и морфологии хромосом называется кариотипом данного вида. Кариотип – это как бы лицо вида. Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом, или по форме хромосом и по их структуре. Следовательно, структура кариотипа может быть таксономическим (систематическим) признаком, который все чаще используется в систематике животных и растений.

Графическое изображение кариотипа называется идиограммой .

Число хромосом в зрелых половых клетках называется гаплоидным (обозначается n ). Соматические клетки содержат двойное количество хромосом – диплоидный набор (2 n ). Клетки, имеющие более двух наборов хромосом, называются полиплоидными (3 n , 4 n , 8 n и т.д.).

В диплоидном наборе имеются парные хромосомы, одинаковые по форме, структуре и размерам, но имеющие разное происхождение (одна материнская, другая отцовская). Они называются гомологичными.

У многих высших раздельнополых животных в диплоидном наборе существует одна или две непарные хромосомы, которые отличаются у самцов и самок, – это половые хромосомы. Остальные хромосомы называются аутосомами . Описаны случаи, когда у самца имеется только одна половая хромосома, а у самки их две.

У многих рыб, млекопитающих (в том числе и человека), некоторых амфибий (лягушки рода Rana ), насекомых (жуки, двукрылые, прямокрылые) крупная хромосома обозначается буквой Х, а маленькая – буквой У. У этих животных в кариотипе самки последняя пара представлена двумя ХХ-хромосомами, а у самца – ХУ-хромосомами.

У птиц, рептилий, отдельных видов рыб, некоторых амфибий (хвостатые амфибии), бабочек мужской пол имеет одинаковые половые хромосомы (WW -хромосомы), а женский – разные (WZ -хромосомы).

У многих животных и человека в клетках индивидов женского пола одна из двух половых хромосом не функционирует и поэтому целиком остается в спирализованном состоянии (гетерохроматин). Она обнаруживается в интерфазном ядре в виде глыбки полового хроматина у внутренней ядерной мембраны. Половые хромосомы в мужском организме функционируют обе пожизненно. Если в ядрах клеток мужского организма обнаруживается половой хроматин, то это значит, что у него имеется лишняя Х-хромосома (ХХУ – болезнь Клейнфельтера). Это может происходить в результате нарушения спермато- или оогенеза. Исследование содержания полового хроматина в интерфазных ядрах широко используется в медицине для диагносцирования хромосомных болезней человека, вызванных нарушением баланса половых хромосом.

Изменения кариотипа

Изменения кариотипа могут быть связаны с изменением числа хромосом или с изменением их структуры.

Количественные изменения кариотипа : 1) полиплоидия; 2) анеуплоидия.

Полиплоидия – это кратное увеличение числа хромосом по сравнению с гаплоидным. В результате вместо обычных диплоидных клеток (2 n ) образуются, например, триплоидные (3 n ), тетраплоидные (4 n ), октаплоидные (8 n ) клетки. Так, у лука, диплоидные клетки которого содержат 16 хромосом, триплоидные клетки содержат 24 хромосомы, тетраплоидные – 32 хромосомы. Полиплоидные клетки отличаются большими размерами и повышенной жизнестойкостью.

Полиплоидия широко распространена в природе, особенно среди растений, многие виды которых произошли в результате кратных удвоений числа хромосом. Большинство культурных растений, например, мягкая пшеница, многорядный ячмень, картофель, хлопчатник, большая часть плодовых и декоративных растений, является естественно возникшими полиплоидами.

Экспериментально полиплоидные клетки легче всего получить действием алкалоида колхицина или других веществ, нарушающих митоз. Колхицин разрушает веретено деления, благодаря чему уже удвоившиеся хромосомы остаются лежать в плоскости экватора и не расходятся к полюсам. После прекращения действия колхицина хромосомы образуют общее ядро, но уже более крупное (полиплоидное). При последующих делениях хромосомы опять будут удваиваться и расходиться к полюсам, но удвоенное количество их останется. Искусственно полученные полиплоиды широко используются в селекции растений. Созданы сорта триплоидной сахарной свеклы, тетраплоидной ржи, гречихи и других культур.

У животных полная полиплоидия встречается очень редко. Например, в горах Тибета обитает один из видов лягушек, популяция которых на равнине имеет диплоидный хромосомный набор, а высокогорные популяции – триплоидный, или даже тетраплоидный.

У человека полиплоидия приводит к резко отрицательным последствиям. Рождение детей с полиплоидией наблюдается крайне редко. Обычно происходит гибель организма на эмбриональной стадии развития (около 22,6% всех спонтанных абортов обусловлены полиплоидией). Следует отметить, что триплоидия встречается в 3 раза чаще, по сравнению с тетраплоидией. Если дети с синдромом триплоидии все же рождаются, то они имеют аномалии в развитии наружных и внутренних органов, практически нежизнеспособны и погибают в первые дни после рождения.

Чаще наблюдается соматическая полиплоидия. Так, в клетках печени человека с возрастом делящихся клеток становится все меньше, но возрастает количество клеток с большим ядром или двумя ядрами. Определение количества ДНК в таких клетках ясно показывает, что они стали полиплоидными.

Анеуплоидия – это увеличение или уменьшение числа хромосом, не кратное гаплоидному. Анеуплоидные организмы, то есть организмы, все клетки которых содержат анеуплоидные наборы хромосом, как правило, стерильны или маложизнеспособны. В качестве примера анеуплоидии рассмотрим некоторые хромосомные болезни человека. Сидром Клейнфельтера: в клетках мужского организма имеется лишняя Х-хромосома, что приводит к общему физическому недоразвитию организма, в частности его половой системы, и психическим отклонениям. Синдром Дауна: лишняя хромосома содержится в 21 паре, что приводит к умственной отсталости, аномалии внутренних органов; болезнь сопровождается некоторыми внешними признаками слабоумия, встречается у мужчин и женщин. Синдром Тернера вызван недостатком одной Х-хромосомы в клетках женского организма; проявляется в недоразвитии половой системы, бесплодии, внешних признаках слабоумия. При недостатке одной Х-хромосомы в клетках мужского организма наблюдается летальный исход на эмбриональной стадии.

Анеуплоидные клетки постоянно возникают в многоклеточном организме в результате нарушения нормального хода клеточного деления. Как правило, такие клетки быстро гибнут, однако при некоторых патологических состояниях организма они успешно размножаются. Высокий процент анеуплоидных клеток характерен, например, для многих злокачественных опухолей человека и животных.

Структурные изменения кариотипа. Хромосомные перестройки, или хромосомные аберрации, возникают в результате одиночных или множественных разрывов хромосом или хроматид. Фрагменты хромосом в местах разрыва способны соединяться друг с другом или с фрагментами других хромосом набора. Хромосомные аберрации бывают следующих типов. Делеция – это потеря срединного участка хромосомы. Дифишенция – это отрыв концевого участка хромосомы. Инверсия – отрыв участка хромосомы, поворот его на 180 0 и присоединение к той же хромосоме; при этом нарушается порядок нуклеотидов. Дупликация – отрыв участка хромосомы и присоединение его к гомологичной хромосоме. Транслокация – отрыв участка хромосомы и присоединение его к негомологичной хромосоме.

В результате таких перестроек могут образовываться дицентрические и ацентрические хромосомы. Крупные делеции, дифишенции и транслокации резко изменяют морфологию хромосом и хорошо видны в микроскоп. Мелкие делеции и транслокации, а также инверсии обнаруживаются по изменению наследования генов, локализованных в участках хромосом, затронутых перестройкой, и по изменению поведения хромосом в процессе образования гамет.

Структурные изменения кариотипа всегда приводят к отрицательным последствиям. Например, синдром «кошачьего крика» вызван хромосомной мутацией (дифишенцией) в 5-й паре хромосом у человека; проявляется в неправильном развитии гортани, что влечет «мяуканье» вместо нормального крика в раннем детстве, отставании в физическом и умственном развитии.

Редупликация хромосом

В основе удвоения (редупликации) хромосом лежит процесс редупликации ДНК, т.е. процесс самовоспроизведения макромолекул нуклеиновых кислот, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению. Синтез ДНК начинается с расхождения цепей, каждая из которых служит матрицей для синтеза дочерней цепи. Продуктами редупликации являются две дочерние молекулы ДНК, каждая из которых состоит из одной родительской и одной дочерней цепи. Важное место среди ферментов редупликации занимает ДНК-полимераза, ведущая синтез со скоростью около 1000 нуклеотидов в секунду (у бактерий). Редупликация ДНК полуконсервативна, т.е. при синтезе двух дочерних молекул ДНК каждая из них содержит одну «старую» и одну «новую» цепочку (такой способ редупликации был доказан Уотсоном и Криком в 1953 г.). Фрагменты, синтезируемые в ходе редупликации на одной цепи, «сшиваются» ферментом ДНК-лигазой.

В редупликации участвуют белки, расплетающие двойную спираль ДНК, стабилизирующие расплетенные участки, предотвращающие запутывание молекул.

Редупликация ДНК у эукариот происходит медленнее (около 100 нуклеотидов в секунду), но одновременно во многих точках одной молекулы ДНК.

Поскольку одновременно с редупликацией ДНК происходит и синтез белков, можно говорить о редупликации хромосом. Исследования, проведенные еще в 50-е годы ХХ столетия показали, что какое бы число продольно расположенных нитей ДНК ни содержали хромосомы организмов разных видов, при делении клетки хромосомы ведут себя как состоящие из двух одновременно редуплицирующихся субъединиц. После редупликации, которая протекает в интерфазе, каждая хромосома оказывается двойной, и еще до начала деления в клетке все готово к равномерному распределению хромосом между дочерними клетками. Если после редупликации не наступает деления, клетка становится полиплоидной. При образовании политенных хромосом хромонемы редуплицируюся, но не расходятся, благодаря чему и получаются гигантские хромосомы с огромным количеством хромонем.

Другие похожие работы, которые могут вас заинтересовать.вшм>

8825. Мітотичний поділ клітин. Будова хромосом 380.96 KB
Будова хромосом Лабораторна робота № 5 Мета: систематизувати та поглибити знання студентiв про життєвий цикл клiтини; про мiтоз його бiологiчне значення; формувати умiння знаходити за допомогою свiтлового мiкоскопа клiтини на рiзних фазах мiтозу зiставляти iх з мiкрофотографiями встановлювати...
16379. При этом еще четче обозначились вызовы без преодоления которых наша страна не может войти в число современн. 14.53 KB
Вместе с тем будучи имманентно присущи по своей природе историческим корням России они усугубляют действие кризиса на общую ситуацию в России и особенно на возможности преодоления кризисных явлений. Поскольку стабилизирующий обстановку в обществе средний класс в прежнем виде был утрачен в России надолго нынешние колебания в покупательной способности большинства населения зависят от наличия стабильной работы и иных как правило невысоких доходов в виде побочного заработка и социальных выплат. тех кто имеет в России официальный статус...
20033. Плазмодии малярии. Морфология. Циклы развития. Иммунитет при малярии. Химиотерапевтические препараты 2.35 MB
Малярийный плазмодий проходит сложный жизненный цикл развития, который совершается в организме человека (бесполый цикл, или шизогония) и комара (половой цикл, или спорогония). Развитие возбудителя малярии в организме человека - шизогония - представлено двумя циклами: первый из них совершается в клетках печени (тканевая, или внеэритроцитарная, шизогония), а второй - в эритроцитах крови (эритроцитарная шизогония).
6233. Строение и функции ядра. Морфология и химический состав ядра 10.22 KB
От цитоплазмы ядра обычно отделяются четкой границей. Бактерии и синезеленые водоросли не имеют сформированного ядра: их ядро лишено ядрышка не отделено от цитоплазмы отчетливо выраженной ядерной мембраной и носит название нуклеоид. Форма ядра.

Организм человека - это сложная многоплановая система, которая функционирует на различных уровнях. Для того, чтобы органы и клетки могли работать в правильном режиме, в конкретных биохимических процессах должны участвовать определённые вещества. Для этого необходимо прочное основание, то есть корректная передача генетического кода. Именно заложенный наследственный материал управляет развитием зародыша.

Однако в наследственной информации иногда возникают изменения, которые появляются в крупных объединениях или же касаются отдельных генов. Подобные ошибки называют мутациями генов. В отдельных случаях такая проблема относится к структурным единицам клетки, то есть к целым хромосомам. Соответственно, в этом случае ошибку называют мутацией хромосом.

Каждая человеческая клетка в норме содержит одинаковое количество хромосом. Они объединены одинаковыми генами. Полный набор составляет 23 пары хромосом, но в половых клетках их в 2 раза меньше. Это объясняется тем, что при оплодотворении слияние сперматозоида и яйцеклетки должно представлять полноценную комбинацию всех необходимых генов. Их распределение происходит не рандомно, а в строго определённом порядке, причём такая линейная последовательность абсолютно одинакова для всех людей.

Спустя 3 года французским учёным Ж. Леженом было обнаружено, что нарушение у людей умственного развития и устойчивость к инфекциям напрямую связаны с Речь шла о лишней 21 хромосоме. Она одна из самых маленьких, но в ней сосредоточено генов. Лишняя хромосома наблюдалась у 1 из 1000 новорождённых. Эта хромосомная болезнь на сегодняшний день является наиболее изученной и называется синдромом Дауна.

В том же 1959 году было изучено и доказано, что наличие у мужчин лишней Х-хромосомы приводит к болезни Кляйнфельтера, при которой человек страдает умственной отсталостью и бесплодием.

Однако, несмотря на то что хромосомные аномалии наблюдаются и изучаются довольно давно, даже современная медицина не способна лечить генетические болезни. Но довольно модернизированы методы диагностики таких мутаций.

Причины возникновения лишней хромосомы

Аномалия является единственной причиной для возникновения 47 хромосом вместо положенных 46. Специалистами в области медицины было доказано, что главная причина возникновения лишней хромосомы - возраст будущей мамы. Чем старше беременная, тем больше вероятность нерасхождения хромосом. Только по этой причине женщинам рекомендуется рожать до 35 лет. В случае возникновения беременности после наступления этого возраста следует пройти обследование.

К факторам, которые способствуют появлению лишней хромосомы, относят уровень аномалии, возросший в целом в мире, степень экологического загрязнения и многое другое.

Существует мнение, что лишняя хромосома возникает, если были в роду аналогичные случаи. Это всего лишь миф: исследования показали, что родители, чьи дети страдают от хромосомного заболевания, имеют совершенно здоровый кариотип.

Диагностика появления ребёнка с хромосомной аномалией

Распознавание нарушения числа хромосом, так называемый скрининг анеуплоидии, выявляет у эмбриона недостаток или переизбыток хромосом. Беременным женщинам старше 35 лет рекомендуется пройти процедуру получения образца околоплодных вод. Если будет обнаружено нарушение кариотипа, то будущей маме будет необходимо прервать беременность, так как родившийся ребёнок всё жизнь будет страдать тяжелым заболеванием при отсутствии эффективных методов лечения.

Нарушение хромосом в основном имеет материнское происхождение, поэтому следует проводить анализ не только клеток эмбриона, но и веществ, которые образуются в процессе созревания. Такую процедуру называют диагностикой генетических нарушений по полярным тельцам.

Синдром Дауна

Учёным, впервые описавшим монголизм, является Даун. Лишняя хромосома, болезнь генов при наличии которой обязательно развивается, широко изучена. При монголизме возникает трисомия по 21 хромосоме. То есть у больного человека вместо положенных 46 получается 47 хромосом. Основной признак - отставание в развитии.

Дети, у которых наблюдается наличие лишней хромосомы, испытывают серьёзные трудности усвоения материала в школьном учреждении, поэтому им необходима альтернативная методика обучения. Помимо умственного, наблюдается отклонение и в физическом развитии, а именно: раскосые глаза, плоское лицо, широкие губы, плоский язык, укороченные или расширенные конечности и стопы, большое скопление кожи в области шеи. Продолжительность жизни в среднем достигает 50 лет.

Синдром Патау

К трисомии также относится синдром Патау, при котором наблюдается 3 копии 13 хромосомы. Отличительным признаком является нарушение деятельности ЦНС или её неразвитость. У больных наблюдаются множественные пороки развития, возможны в том числе сердца. Больше 90 % людей с синдромом Патау умирают в первый год жизни.

Синдром Эдвардса

Эта аномалия, как и предыдущие, относится к трисомии. В данном случае речь идёт о 18 хромосоме. характеризуется различными нарушениями. В основном у больных наблюдается костная деформация, изменённая форма черепа, проблемы с органами дыхания и сердечно-сосудистой системой. Продолжительность жизни обычно около 3 месяцев, но некоторые младенцы доживают до года.

Эндокринные болезни при аномалии хромосом

Помимо перечисленных синдромов хромосомной анормальности, существуют и другие, при которых также наблюдается численная и структурная аномалия. К таким болезням относятся следующие:

  1. Триплоидия - довольно редкое расстройство хромосом, при котором их модальное число равно 69. Беременность обычно заканчивается ранним выкидышем, но при выживании ребёнок живёт не более 5 месяцев, наблюдаются многочисленные врождённые дефекты.
  2. Синдром Вольфа-Хиршхорна - также одна из редчайших хромосомных аномалий, которая развивается благодаря делеции дистального конца короткого плеча хромосомы. Критической областью этого расстройства является 16,3 на хромосоме 4р. Характерные признаки - проблемы в развитии, задержки в росте, судороги и типичные черты лица
  3. Синдром Прадера-Вилли - заболевание встречается очень редко. При такой аномальности хромосом 7 генов или их некоторые части на 15 отцовской хромосоме не функционируют или вовсе удалены. Признаки: сколиоз, косоглазие, задержка физического и интеллектуального развития, быстрая утомляемость.

Как воспитывать ребёнка с хромосомным заболеванием?

Воспитывать ребёнка с врождёнными хромосомными заболеваниями оказывается непросто. Для того чтобы облегчить свою жизнь, необходимо придерживаться некоторых правил. Во-первых, сразу следует преодолеть отчаяние и страх. Во-вторых, не нужно тратить время на поиске виновного, его просто нет. В-третьих, важно определиться с тем, какая помощь требуется ребёнку и семье, после чего обращаться к специалистам за медицинской и психолого-педагогической помощью.

В первый год жизни диагностика крайне важна, так как в этот период развивается двигательная функция. С помощью профессионалов ребёнок быстрее приобретёт моторные способности. Необходимо объективно обследовать малыша на патологию зрения и слуха. Также ребёнок должен наблюдаться у педиатра, психоневролога и эндокринолога.

Носитель лишней хромосомы обычно дружелюбен, что облегчает его воспитание, также он по мере своих сил старается заслужить одобрение взрослого. Уровень развития особенного малыша будет зависеть от того, насколько упорно будут его обучать основным навыкам. Больные дети хоть и отстают от остальных, но требуют к себе много внимания. Всегда необходимо поощрять самостоятельность ребёнка. Прививать навыки самообслуживания следует на собственном примере, и тогда результат не заставит себя долго ждать.

Дети с хромосомными заболеваниями наделены особыми талантами, который необходимо раскрыть. Это могут быть занятия музыкой или рисование. Важно развиваться речь малыша, играть в активные и развивающие моторику игры, читать, а также приучать к режиму и аккуратности. Если проявить к ребёнку всю свою нежность, заботу, внимательность и ласку, он ответит тем же.

Можно ли вылечить?

На сегодняшний день излечить хромосомные болезни невозможно; каждый предлагаемый метод является экспериментальным, а их клиническая эффективность не доказана. Добиться успехов в развитии, социализации и приобретении навыков помогает систематическая медицинская и педагогическая помощь.

Больной ребёнок должен всё время наблюдаться у специалистов, так как медицина вышла на тот уровень, при котором способна предоставить необходимое оборудование и различные виды терапии. Педагоги же применят современные подходы в обучении и реабилитации малыша.

МОСКВА, 4 июл — РИА Новости, Анна Урманцева . У кого геном больше? Как известно, одни существа имеют более сложное строение, чем другие, а раз все записано в ДНК, то и это тоже должно быть отражено в ее коде. Получается, человек с его развитой речью обязан быть сложнее маленького круглого червяка. Однако если сравнить нас с червяком по количеству генов, получится примерно то же самое: 20 тысяч генов Caenorhabditis elegans против 20-25 тысяч Homo sapiens.

Еще более обидными для "венца земных созданий" и "царя природы" являются сравнения с рисом и кукурузой — 50 тысяч генов по отношению к человеческим 25.

Впрочем, может, мы не то считаем? Гены — это "коробочки", в которые упакованы нуклеотиды — "буквы" генома. Может, посчитать их? У человека 3,2 миллиарда пар нуклеотидов. А вот японский вороний глаз (Paris japonica) — красивое растение с белыми цветами — имеет в своем геноме 150 миллиардов пар оснований. Получается, что человек должен быть устроен в 50 раз проще какого-то цветка.

А двоякодышащая рыба протоптер (двоякодышащая — обладающая как жаберным, так и легочным дыханием), получается, в 40 раз сложнее, чем человек. Может, все рыбы почему-то сложнее, чем люди? Нет. Ядовитая рыба фугу, из которой японцы готовят деликатес, имеет геном в восемь раз меньше, чем у человека, и в 330 раз меньше, чем у двоякодышащей рыбы протоптер.
Остается посчитать хромосомы — но это еще сильнее запутывает картину. Как может человек по количеству хромосом быть равным ясеню, а шимпанзе — таракану?


С этими парадоксами эволюционные биологи и генетики столкнулись давным-давно. Они были вынуждены признать, что размер генома, в чем бы мы его ни пытались посчитать, поразительно не связан со сложностью устройства организмов. Этот парадокс назвали "загадкой значений С", где С — это количество ДНК в клетке (C-value paradoх, точный перевод — "парадокс величины генома"). И все-таки какие-то корреляции между видами и царствами существуют.

© Иллюстрация РИА Новости. А.Полянина


© Иллюстрация РИА Новости. А.Полянина

Ясно, например, что эукариоты (живые организмы, клетки которых содержат ядро) имеют в среднем геномы больше, чем прокариоты (живые организмы, клетки которых не содержат ядро). Позвоночные животные имеют в среднем геномы больше, чем беспозвоночные. Однако тут есть исключения, которые никто пока не смог объяснить.

Генетики расшифровали ДНК растения, способного пережить атомный взрыв Ученые впервые расшифровали полный геном гинкго – древнейшего современного растения на Земле, первые представители которого появились еще до рождения первых динозавров, во времена звероящеров.

Были предположения, что размер генома связан с продолжительностью жизненного цикла организма. Некоторые ученые утверждали на примере растений, что многолетние виды имеют более крупные геномы, чем однолетние, причем обычно с разницей в несколько раз. А самые маленькие геномы принадлежат растениям-эфемерам, которые проходят полный цикл от рождения до смерти в течение нескольких недель. Этот вопрос сейчас активно обсуждается в научных кругах.

Поясняет ведущий научный сотрудник Института общей генетики им. Н. И. Вавилова Российской академии наук, профессор Техасского агромеханического университета и Гёттингенского университета Константин Крутовский: "Размер генома не связан с продолжительностью жизненного цикла организма! Например, есть виды внутри одного рода, которые имеют одинаковый размер генома, но могут различаться по продолжительности жизни в десятки, если не сотни раз. В целом есть связь размера генома с эволюционной продвинутостью и сложностью организации, но со множеством исключений. В основном размер генома связан с плоидностью (копийностью) генома (причем полиплоиды встречаются и у растений, и у животных) и количеством высокоповторяющейся ДНК (простые и сложные повторы, транспозоны и другие мобильные элементы)".

Генетики "воскресили" кукурузу возрастом в пять тысяч лет Генетики смогли извлечь ДНК из древнейших останков "культурной" кукурузы и восстановить ее геном, указавший на более древние корни любимого растения Никиты Сергеевича Хрущева, чем мы считали раньше.

Есть также ученые, которые придерживаются другой точки зрения на этот вопрос.

МОСКВА, 4 июл — РИА Новости, Анна Урманцева . У кого геном больше? Как известно, одни существа имеют более сложное строение, чем другие, а раз все записано в ДНК, то и это тоже должно быть отражено в ее коде. Получается, человек с его развитой речью обязан быть сложнее маленького круглого червяка. Однако если сравнить нас с червяком по количеству генов, получится примерно то же самое: 20 тысяч генов Caenorhabditis elegans против 20-25 тысяч Homo sapiens.

Еще более обидными для "венца земных созданий" и "царя природы" являются сравнения с рисом и кукурузой — 50 тысяч генов по отношению к человеческим 25.

Впрочем, может, мы не то считаем? Гены — это "коробочки", в которые упакованы нуклеотиды — "буквы" генома. Может, посчитать их? У человека 3,2 миллиарда пар нуклеотидов. А вот японский вороний глаз (Paris japonica) — красивое растение с белыми цветами — имеет в своем геноме 150 миллиардов пар оснований. Получается, что человек должен быть устроен в 50 раз проще какого-то цветка.

А двоякодышащая рыба протоптер (двоякодышащая — обладающая как жаберным, так и легочным дыханием), получается, в 40 раз сложнее, чем человек. Может, все рыбы почему-то сложнее, чем люди? Нет. Ядовитая рыба фугу, из которой японцы готовят деликатес, имеет геном в восемь раз меньше, чем у человека, и в 330 раз меньше, чем у двоякодышащей рыбы протоптер.
Остается посчитать хромосомы — но это еще сильнее запутывает картину. Как может человек по количеству хромосом быть равным ясеню, а шимпанзе — таракану?


С этими парадоксами эволюционные биологи и генетики столкнулись давным-давно. Они были вынуждены признать, что размер генома, в чем бы мы его ни пытались посчитать, поразительно не связан со сложностью устройства организмов. Этот парадокс назвали "загадкой значений С", где С — это количество ДНК в клетке (C-value paradoх, точный перевод — "парадокс величины генома"). И все-таки какие-то корреляции между видами и царствами существуют.

© Иллюстрация РИА Новости. А.Полянина


© Иллюстрация РИА Новости. А.Полянина

Ясно, например, что эукариоты (живые организмы, клетки которых содержат ядро) имеют в среднем геномы больше, чем прокариоты (живые организмы, клетки которых не содержат ядро). Позвоночные животные имеют в среднем геномы больше, чем беспозвоночные. Однако тут есть исключения, которые никто пока не смог объяснить.

Генетики расшифровали ДНК растения, способного пережить атомный взрыв Ученые впервые расшифровали полный геном гинкго – древнейшего современного растения на Земле, первые представители которого появились еще до рождения первых динозавров, во времена звероящеров.

Были предположения, что размер генома связан с продолжительностью жизненного цикла организма. Некоторые ученые утверждали на примере растений, что многолетние виды имеют более крупные геномы, чем однолетние, причем обычно с разницей в несколько раз. А самые маленькие геномы принадлежат растениям-эфемерам, которые проходят полный цикл от рождения до смерти в течение нескольких недель. Этот вопрос сейчас активно обсуждается в научных кругах.

Поясняет ведущий научный сотрудник Института общей генетики им. Н. И. Вавилова Российской академии наук, профессор Техасского агромеханического университета и Гёттингенского университета Константин Крутовский: "Размер генома не связан с продолжительностью жизненного цикла организма! Например, есть виды внутри одного рода, которые имеют одинаковый размер генома, но могут различаться по продолжительности жизни в десятки, если не сотни раз. В целом есть связь размера генома с эволюционной продвинутостью и сложностью организации, но со множеством исключений. В основном размер генома связан с плоидностью (копийностью) генома (причем полиплоиды встречаются и у растений, и у животных) и количеством высокоповторяющейся ДНК (простые и сложные повторы, транспозоны и другие мобильные элементы)".

Генетики "воскресили" кукурузу возрастом в пять тысяч лет Генетики смогли извлечь ДНК из древнейших останков "культурной" кукурузы и восстановить ее геном, указавший на более древние корни любимого растения Никиты Сергеевича Хрущева, чем мы считали раньше.

Есть также ученые, которые придерживаются другой точки зрения на этот вопрос.

Загрузка...
Top