Впервые ученые передали информацию напрямую от мозга к мозгу. Реакция мозга на информации Взаимосвязи в простых нервных системах

Человек в состоянии ощущать и воспринимать объективный мир благодаря особой деятельности мозга. Именно с мозгом связаны все органы чувств. Каждый из этих органов реагирует на определенного рода стимулы: органы зрения - на световое воздействие, органы слуха и осязания - на механическое воздействие, органы вкуса и обоняния - на химическое. Однако сам мозг не в состоянии воспринимать эти виды воздействий. Он "понимает" только электрические сигналы, связанные с нервными импульсами. Для того чтобы мозг отреагировал на раздражитель, в каждой сенсорной модальности сначала должно произойти преобразование соответствующей физической энергии в электрические сигналы, которые затем своими путями следуют в мозг. Этот процесс перевода осуществляют специальные клетки в органах чувств, называемые рецепторами. Зрительные рецепторы, например, расположены тонким слоем на внутренней стороне глаза; в каждом зрительном рецепторе есть химическое вещество, реагирующее на свет, и эта реакция запускает ряд событий, в результате которых возникает нервный импульс. Слуховые рецепторы представляют собой тонкие волосяные клетки, расположенные глубоко в ухе; вибрации воздуха, являющиеся звуковым стимулом, изгибают эти волосяные клетки, в результате чего и возникает нервный импульс. Аналогичные процессы происходят и в других сенсорных модальностях.

Рецептор - это специализированная нервная клетка, или нейрон; будучи возбужденной, она посылает электрический сигнал промежуточным нейронам. Этот сигнал движется, пока не достигнет своей рецептивной зоны в коре головного мозга, причем у каждой сенсорной модальности имеется своя рецептивная зона. Где-то в мозге - может, в рецептивной зоне коры, а может, в каком-то другом участке коры - электрический сигнал вызывает осознанное переживание ощущения. Так, когда мы ощущаем прикосновение, это ощущение "происходит" у нас в мозге, а не на коже. При этом электрические импульсы, которые прямо опосредуют ощущение касания, сами были вызваны электрическими импульсами, возникшими в рецепторах осязания, которые расположены в коже. Сходным образом ощущение горького вкуса рождается не в языке, а в мозге; но мозговые импульсы, опосредующие ощущение вкуса, сами были вызваны электрическими импульсами вкусовых рецепторов языка.

Мозг воспринимает не только воздействие раздражителя, он также воспринимает и ряд характеристик раздражителя, например интенсивность воздействия. Следовательно, рецепторы должны обладать способностью кодировать интенсивность и качественные параметры раздражителя. Как они это делают?

Для того чтобы ответить на этот вопрос, ученым необходимо было провести ряд экспериментов по регистрации активности единичных клеток рецептора и проводящих путей во время предъявления испытуемому различных входных сигналов, или стимулов. Так можно точно определить, на какие свойства стимула реагирует тот или иной нейрон. Как практически осуществляется подобный эксперимент?

До начала эксперимента животное (обезьяну) подвергают хирургической операции, во время которой в определенные участки зрительной коры вживляются тонкие провода. Разумеется, такая операция проводится в условиях стерильности и при соответствующей анестезии. Тонкие провода - микроэлектроды - покрыты изоляцией везде, кроме самого кончика, которым регистрируется электрическая активность контактирующего с ним нейрона. После имплантации эти микроэлектроды не вызывают боли, и обезьяна может жить и передвигаться вполне нормально. Во время собственно эксперимента обезьяну помещают в устройство для тестирования, а микроэлектроды подсоединяют к усиливающим и регистрирующим устройствам. Затем обезьяне предъявляют различные зрительные стимулы. Наблюдая, от какого электрода поступает устойчивый сигнал, можно определить, какой нейрон реагирует на каждый из стимулов. Поскольку эти сигналы очень слабые, их надо усилить и отобразить на экране осциллографа, преобразующего их в кривые изменения электрического напряжения. Большинство нейронов вырабатывает ряд нервныхимпульсов, отражающихся на осциллографе в виде вертикальных всплесков (спайков). Даже при отсутствии стимулов многие клетки вырабатывают редкие импульсы (спонтанная активность). Когда предъявляется стимул, к которому чувствителен данный нейрон, можно видеть быструю последовательность спайков. Регистрируя активность единичной клетки, ученые немало узнали о том, как органы чувств кодируют интенсивность и качество стимула. Основной способ кодирования интенсивности стимула - это число нервных импульсов в единицу времени, т.е. частота нервных импульсов. Покажем это на примере осязания. Если кто-то слегка коснется вашей руки, в нервных волокнах появится ряд электрических импульсов. Если давление увеличивается, величина импульсов остается той же, но их число в единицу времени возрастает. То же самое с другими модальностями. В общем, чем больше интенсивность, тем выше частота нервных импульсов и тем больше воспринимаемая интенсивность стимула.

Интенсивность стимула можно кодировать и другими способами. Один из них - кодировать интенсивность в виде временного паттерна следования импульсов. При низкой интенсивности нервные импульсы следуют относительно редко и интервал между соседними импульсами изменчив. При высокой же интенсивности этот интервал становится достаточно постоянным. Еще одна возможность - кодировать интенсивность в виде абсолютного числа активированных нейронов: чем больше интенсивность стимула, тем больше вовлеченных нейронов.

Кодирование качества стимула - дело более сложное. Пытаясь объяснить этот процесс, И. Мюллер в 1825 г. предположил, что мозг способен различать информацию разных сенсорных модальностей благодаря тому, что она идет по различным чувствительным нервам (одни нервы передают зрительные ощущения, другие - слуховые и т.д.). Поэтому, если не брать во внимание ряд утверждений Мюллера о непознаваемости реального мира, то можно согласиться с тем, что нервные пути, начинающиеся у различных рецепторов, оканчиваются в различных зонах коры мозга. Следовательно, мозг получает информацию о качественных параметрах раздражителя благодаря тем нервным каналам, которые соединяют мозг и рецептор. Однако мозг способен различать воздействия одной модальности. Например, мы отличаем красное от зеленого или сладкое от кислого. Видимо, кодирование здесь также связано со специфическими нейронами. К примеру, есть подтверждение тому, что человек отличает сладкое от кислого просто потому, что для каждого вида вкуса имеются свои нервные волокна. Так, по "сладким" волокнам передается в основном информация от рецепторов сладкого, по "кислым" волокнам - от рецепторов кислого, и то же самое с "солеными" волокнами и "горькими" волокнами.

Однако специфичность - не единственный возможный принцип кодирования. Возможно также, что в сенсорной системе для кодирования информации о качестве используется определенный паттерн нервных импульсов. Отдельное нервное волокно, максимально реагируя, скажем, на сладкое, может реагировать, но в различной степени, и на другие виды вкусовых стимулов. Одно волокно сильнее всего реагирует на сладкое, слабее - на горькое и еще слабее - на соленое; так что "сладкий" стимул активировал бы большое количество волокон с разной степенью возбудимости, и тогда этот конкретный паттерн нервной активности и был бы в системе кодом для сладкого. В качестве кода горького по волокнам передавался бы другой паттерн.

Вместе с тем в научной литературе мы можем встретить и другое мнение. Например, есть все основания утверждать, что качественные параметры раздражителя могут быть закодированы через форму электрического сигнала, поступающего в мозг. С подобным явлением мы сталкиваемся, когда воспринимаем тембр голоса или тембр звучания музыкального инструмента. Если форма сигнала близка к синусоиде, то тембр нам приятен, если же форма существенно отличается от синусоиды, то у нас возникает ощущение диссонанса.

Таким образом, отражение в ощущениях качественных параметров раздражителя - это весьма сложный процесс, природа которого до конца не изучена.

По: Аткинсон Р.Л., Аткинсон Р.С., Смит Э.Е и др. Введение в психологию: Учебник для университетов / Пер. с англ. под. ред. В.П. Зинченко, - М.: Тривола, 1999.

Ощущения связывают человека с внешним миром и являются как основным источником информации о нем, так и основным условием психического развития. Однако несмотря на очевидность этих положений, они неоднократно подвергались сомнению. Представители идеалистического направления в философии и психологии нередко высказывали мысль о том, что подлинным источником нашей сознательной деятельности являются не ощущения, а внутреннее состояние сознания, способность разумного мышления, заложенные от природы и не зависимые от притока информации, поступающей из внешнего мира. Эти воззрения легли в основу философии рационализма. Суть ее заключалась в утверждении о том, что сознание и разум - это первичное, далее не объяснимое свойство человеческого духа.

Философы-идеалисты и многие психологи, являющиеся сторонниками идеалистической концепции, нередко делали попытки отвергнуть положение о том, что ощущения человека связывают его с внешним миром, и доказать обратное, парадоксальное положение, заключающееся в том, что ощущения непреодолимой стеной отделяют человека от внешнего мира. Подобное положение было выдвинуто представителями субъективного идеализма (Д. Беркли, Д. Юм, Э. Мах).

И. Мюллер, один из представителей дуалистического направления в психологии, на основе вышеупомянутого положения субъективного идеализма сформулировал теорию "специфической энергии органов чувств". Согласно этой теории, каждый из органов чувств (глаз, ухо, кожа, язык) не отражает воздействия внешнего мира, не дает информации о реальных процессах, протекающих в окружающей среде, а лишь получает от внешних воздействий толчки, возбуждающие их собственные процессы. Согласно этой теории, каждый орган чувств обладает своей собственной "специфической энергией", возбуждаемой любым воздействием, доходящим из внешнего мира. Так, достаточно нажать на глаз или воздействовать на него электрическим током, чтобы получить ощущение света; достаточно механического или электрического раздражения уха, чтобы возникло ощущение звука. Из этих положений делался вывод, что органы чувств не отражают внешних воздействий, а лишь возбуждаются от них, и человек воспринимает не объективные воздействия внешнего мира, а лишь свои собственные субъективные состояния, отражающие деятельность его органов чувств.

Близкой была точка зрения Г. Гельмгольца, который не отвергал того, что ощущения возникают в результате воздействия предметов на органы чувств, но считал, что возникающие вследствие этого воздействия психические образы не имеют ничего общего с реальными объектами. На этом основании он называл ощущения "символами", или "знаками", внешних явлений, отказываясь признать их изображениями, или отображениями, этих явлений. Он считал, что воздействие определенного объекта на орган чувств вызывает в сознании "знак", или "символ", воздействующего объекта, но не его изображение. "Ибо от изображения требуется известное сходство с изображаемым предметом... От знака же не требуется никакого сходства с тем, знаком чего он является".

Легко видеть, что оба этих подхода приводят к следующему утверждению: человек не может воспринимать объективный мир, и единственной реальностью являются субъективные процессы, отражающие деятельность его органов чувств, которые и создают субъективно воспринимаемые "элементы мира".

Подобные выводы были положены в основу теории солипсизма (от лат. solus - один, ipse - сам) сводившейся к тому, что человек может познать только самого себя и не имеет никаких доказательств существования чего-то иного, кроме него самого.

На противоположных позициях стоят представители материалистического направления, считающие возможным объективное отражение внешнего мира. Изучение эволюции органов чувств убедительно показывает, что в процессе длительного исторического развития сформировались особые воспринимающие органы (органы чувств, или рецепторы), которые специализировались на отражении особых видов объективно существующих форм движения материи (или видов энергии): слуховые рецепторы, отражающие звуковые колебания; зрительные рецепторы, отражающие определенные диапазоны электромагнитных колебаний, и т.д. Изучение эволюции организмов показывает, что на самом деле мы имеем не "специфические энергии самих органов чувств", а специфические органы, объективно отражающие различные виды энергии. Причем высокая специализация различных органов чувств имеет в своей основе не только особенности строения периферической части анализатора - рецепторов, но и высочайшую специализацию нейронов, входящих в состав центральных нервных аппаратов, до которых доходят сигналы, воспринимаемые периферическими органами чувств.

Следует отметить, что ощущения человека - это продукт исторического развития, и поэтому они качественно отличаются от ощущений животных. У животных развитие ощущений целиком ограничено их биологическими, инстинктивными потребностями. У многих животных отдельные виды ощущений поражают своей тонкостью, однако проявление этой тонко развитой способности ощущения не может выйти за пределы того круга объектов и их свойств, которые имеют непосредственное жизненное значение для животных данного вида. Например, пчелы способны гораздо тоньше, чем среднестатистический человек, различать концентрацию сахара в растворе, но этим и ограничивается тонкость их вкусовых ощущений. Другой, пример: ящерица, которая способна слышать легкий шорох ползущего насекомого, никак не будет реагировать на очень громкий стук камня о камень.

У человека способность ощущать не ограничена биологическими потребностями. Труд создал у него несравненно более широкий, чем у животных, круг потребностей, а в деятельности, направленной на удовлетворение этих потребностей, постоянно развивались способности человека, в том числе и способность ощущать. Поэтому человек может ощущать гораздо большее количество свойств окружающих его предметов, чем животное.

1 За основу данного раздела взяты главы из книги: Психология. / Под ред. проф. К.Н. Корнилова, проф. А.А. Смирнова., проф. Б.М. Теплова. - Изд. 3-е, перераб. и доп. - М.: Учпедгиз, 1948.

Все наши чувства формируются в головном мозге. Вне зависимости от вида поступающей информации, будь то звуки музыки, какие-то запахи или визуальные образы, все они по своей сути — это всего лишь сигналы, передающиеся и расшифровывающиеся специализированными клетками. При этом, если не принимать во внимание эти сигналы, то мозг никак напрямую не контактирует с внешней средой. И если так, то вполне вероятно, что у нас есть возможность сформировать новые пути взаимодействия мозга с окружающим миром и передавать данные напрямую.

Давайте вернемся на пару предложений назад. Если вся информация — это лишь поступающие импульсы, то почему зрение так отличается от запаха или вкуса? Почему вы никогда не перепутаете визуальную красоту распускающейся сосны со вкусом сыра фета? Или трение наждачной бумаги на кончиках пальцев с запахом свежего эспрессо? Можно предположить, что это как-то связано со структурой мозга: участки, участвующие в слухе, отличаются от тех, что обрабатывают данные о визуальных образах и так далее. Но почему в таком случае люди, потерявшие, например, зрение, согласно многочисленным исследованиям, получают «переориентацию» зрительной зоны на усиление других чувств?

Таким образом возникла гипотеза: внутренний субъективный опыт определяется структурой самих данных. Другими словами, сама информация, поступающая, допустим, от сетчатки, имеет иную структуру, чем данные, исходящие от барабанной перепонки или рецепторов с кончиков пальцев. В результате и получаются разные чувства. Получается, что в теории мы можем сформировать новые пути для передачи информации. Это не будет похоже на зрение, слух, вкус, прикосновение или запах. Это будет что-то совершенно новое.

Есть два способа сделать это. Первый — путем вживления электродов непосредственно в мозг. Второй — получением сигналов мозгом неинвазивно. К примеру, с помощью носимых устройств. Представьте, что вы носите браслет с несколькими вибрационными двигателями, которые стимулируют различные места вокруг запястья, чтобы сформировать поток данных. Когда мы устанавливаем четкую взаимосвязь между информацией и видом прикосновения, люди смогут легко начать ее распознавать. Чем то подобным в данный момент занимается компания NeoSensory, создавая вибрационные нейроинтерфейсы. Один из таких разработчики планируют представить уже в следующем 2019 году.

«Подумайте о том, как младенцы “учатся” пользоваться ушами, хлопая в ладоши или бормоча что–нибудь и улавливая звуки. Такое обучение также можно наблюдать у людей, родившихся глухими и оснащенных кохлеарными имплантами во взрослом возрасте. Во-первых, опыт кохлеарного имплантата совсем не похож на звук. Моя подруга описала это как безболезненные удары электрическим током. Она не чувствовала, что это как-то связано со звуком. Но примерно через месяц все начало «звучать», пусть и паршиво. Возможно, тот же самый процесс произошел с каждым из нас, когда мы учились пользоваться ушами. Мы просто не помним этого.» — заявил один из авторов работы по созданию нейроинтерфейсов Дэвид Иглман.

Основано на заметке профессора кафедры психиатрии и поведенческих наук Стэнфордского университета, автора книги The Brain: The Story Of You, а также одного из основателей NeoSensory Дэвида Иглмана. Опубликовано в издании Wired.

Верите ли вы в развитие нейроинтерфейсов? Можете рассказать об этом в нашем

Состав мозга человека включает структурные и функционально взаимосвязанные нейроны. Этот орган млекопитающих в зависимости от вида содержит от 100 миллионов до 100 миллиардов нейронов.

Каждый нейрон млекопитающих состоит из клетки – элементарной единицы строения, дендритов (короткий отросток) и аксона (длинный отросток). Тело элементарной единицы строения содержит ядро и цитоплазму.

Аксон выходит из тела клетки и часто порождает множество мелких ветвей, прежде чем попасть в нервные окончания.

Дендриты простираются от тела нервной клетки и получают сообщения от других единиц нервной системы.

Синапсы – это контакты где один нейрон соединяется с другим. Дендриты покрыты синапсами которые образуются концами аксонов от других структурно-функциональных единиц системы.

Состав мозга человека 86 миллиардов нейронов состоящих на 80 % из воды и потребляющих около 20% кислорода предназначенного для всего организма, хотя его масса всего 2% от массы тела.

Как передаются сигналы в мозгу

Когда единицы функциональной системы нейроны получают и отправляют сообщения, они передают электрические импульсы по их аксонам, которые могут варьироваться по длине от сантиметра до одного метра или более. видно что очень сложен.

Многие аксоны покрыты многослойной миелиновой оболочкой, которая ускоряет передачу электрических сигналов по аксону. Эта оболочка сформирована с помощью специализированных элементарных единиц строения глии. В органе центральной системы, глий называется олигодендроцитами, а в периферической нервной системе называется шванновскими клетками. Мозговой центр содержит, по меньшей мере в десять раз больше глия чем единиц нервной системы. Глия выполняет много функций. Значение глия в транспортировке питательных вещества к нейронам, очищение, переработка части мертвых нейронов.

Чтобы передать сигналы функциональные единицы системы организма любого млекопитающего не работают в одиночку. В нейронной цепи, активность одной элементарной единицы строения напрямую влияет на многие другие. Чтобы разобраться в том, как эти взаимодействия управляют функцией мозга, неврологи изучают связи между нервными клетками и как они передают сигналы в мозгу и меняются с течением времени. Это изучение может привести ученых к лучшему пониманию того, как нервная система развивается, подвергается заболеваниям или травмам, нарушаются естественные ритмы мозговых связей. Благодаря новой технологии формирования изображений ученые теперь способны лучше визуализировать цепи, соединяющие участки и состав мозга человека.

Развитие методов , микроскопии и вычислительной техники позволяют ученым начать составлять карты связей между отдельными нервными клетками у животных лучше, чем когда-либо прежде.

Изучив досконально состав мозга человека ученые могут пролить свет на расстройства мозговой деятельности и ошибки в развитии нервной сети, включая аутизм и шизофрению.

Особая организация работы нервной системы человека даёт возможность ощущать и воспринимать объективный мир. С мозгом связаны все органы чувств. Каждый орган чувства реагирует на стимулы определённой модальности:

Органы зрения на световое воздействие,

Органы слуха на волновые колебания воздуха,

Органы осязания на механическое воздействие,

Органы вкуса на химическое воздействие в области рта,

Органы обоняния на химическое воздействие в области носа.

Чтобы мозг отреагировал на раздражитель, в каждой сенсорной модальности сначала должно произойти преобразование соответствующей физической энергии в электрические. Далее эти сигналы - каждый своим путём - следуют в мозг. Данный процесс перевода физической энергии в электрическую осуществляют специальные клетки в органах чувств, называемые рецепторами.

Зрительные рецепторы расположены тонким слоем на внутренней стороне глаза. В каждом зрительном рецепторе есть химическое вещество, реагирующее на свет, и эта реакция запускает ряд событий, в результате которых возникает нервный импульс.

Слуховые рецепторы это тонкие волосяные клетки, расположенные глубоко в ухе. Вибрации воздуха изгибают эти волосяные клетки, в результате чего и возникает нервный импульс.

Подобные "хитрости" природа придумала и для других сенсорных модальностей.

Рецептор это нейрон, то есть нервная клетка, хотя и специализированная. Возбуждённый рецептор посылает электрический сигнал промежуточным нейронам. Те - в рецептивную зону коры головного мозга. У каждой сенсорной модальности имеется своя рецептивная зона.

В рецептивной или иной зоне коры возникает уже осознанное переживание ощущения. Мозг и сознание воспринимают не только воздействие раздражителя, но и ряд характеристик раздражителя, например интенсивность воздействия.

Чем больше интенсивность воздействия, тем выше частота нервных импульсов - таким образом природа закодировала это соответствие. Чем выше частота нервных импульсов - тем больше воспринимаемая интенсивность стимула мозгом и сознанием.

Для более точной спецификации сигнала (например какого цвета свет, или какого вкуса еда) существуют специфичные нейроны (один нейрон передаёт информацию о синем цвете, другой о зелёном, третий о кислой еде, четвёртый о солёной...).

В звуковом восприятии особенности ощущения могут кодироваться формой электрического сигнала, поступающего в мозг. Если форма сигнала близка к синусоиде, этот звук нам приятен.

Литература

Аткинсон Р. Л., Агкинсон Р. С., Смит Э. Е. Введение в психологию: Учебник для университетов / Пер. с англ. под. ред. В. П. Зинченко. - М.: Тривола, 1999.
Загрузка...
Top