Тепловой баланс горения. Химическая термодинамика Теплота образования формула

Под теплотой сгорания понимается отношение выделяющейся теплоты к массе ТТ, которая была при этом израсходована, или иначе, количество теплоты, выделяемое единицей массы топлива при его полном сгорании. Теплота сгорания топлива является интегральной характеристикой. Для определения теплоты сгорания можно воспользоваться методом калориметрирова- ния. Суть этого метода состоит в том, что ТТ помещается в замкнутый сосуд, осуществляется реакция, а выделившаяся при этом теплота отводится до тех пор, пока температура продуктов сгорания не станет равной исходной температуре ТТ. Замеренное количество теплоты делится на массу находящегося в калориметре топлива.

Теплота сгорания ТТ, определенная таким образом, отличается от изменения химической энергии AU X на разницу теплоемкостей исходных и конечных веществ.

Действительно, топливо перед помещением в калориметр имело запас энергии на один килограмм:

где U XT - химическая энергия ТТ; с т - теплоемкость ТТ; Т - температура, при которой начинается и заканчивается калориметрирование.

После сжигания запас энергии топлива равен U x ap 4- c np dT + Q, где U x a - некоторое количество химической энергии, отсчитываемой от прежнего уровня. Следовательно,

откуда

Значение с т - с ир = прежде всего, зависит от условий проведения кало- риметрирования (проводится оно при постоянном давлении или объеме).

Каждому химическому соединению соответствует свой уровень химической энергии, который характеризуется теплотой образования.

Под теплотой образования понимается количество теплоты, выделяемой (-ДHf) или поглощаемой (+ДHf) при образовании того или иного химического соединения из простых веществ.

Для проведения термодинамического расчета состава и параметров рабочего процесса продуктов сгорания используются относительные значения энтальпии (разность значений энтальпии веществ в различных состояниях) с некоторым условным началом отсчета. Это условное начало отсчета может быть произвольным, но одинаковым для всех участвующих в процессе веществ - стандартное состояние. Для Н 2 , 0 2 , N 2 , F 2 , С1 2 за начало отсчета принимается энтальпия газообразного молекулярного состояния, т. е. теплота образования указанных веществ равна нулю. Эти газообразные молекулярные соединения устойчивы при Т 0 = 293,15 К ир = 0,1 МПа. За стандартное состояние вещества принимают твердый p-графит (в США принят твердый углерод в виде алмаза). Для С принимается аллотропическая форма p-графита, для металлов, таких как Al, Mg, Li, Be и другие, - кристаллические формы.

Теплота образования считается положительной, когда образование вещества из простых осуществляется с поглощением тепла (эндотермические реакции), и отрицательней, когда образование вещества протекает с выделением теплоты (экзотермические реакции). Для примера в таблице 5.1 приведены значения стандартной теплоты образования некоторых веществ.

Если в результате горения вещество образуется из простых веществ, находящихся в стандартном состоянии, теплота образования продуктов сгорания равна по абсолютной величине и противоположна по знаку теплоте сгорания.

Так,в реакции

теплота образования Н 2 0 будет отрицательной, а теплота сгорания топлива 2Н 2 + 0 2 - положительной.

Тогда

где ЛЯ/Го - теплота образования веществ, взятых в стандартном состоянии. В обозначении теплоты образования Д указывает на изменение энергетического уровня по отношению к стандартному состоянию. Индекс «°» вверху указывает на стандартность, а индекс «0» внизу, выраженный числом, дает абсолютную температуру исходных компонентов в стандартном состоянии. Энтальпии элементов в стандартном состоянии при температуре Т 0 принимаются за начало отсчета для энтальпии компонентов топлив и продуктов сгорания.

Под стандартной теплотой образования понимается теплота образования вещества из простых веществ (элементов) в стандартном состоянии при стандартных условиях:

Таблица 5.1

Значения стандартной теплоты образования некоторых веществ

Стандартная теплота образования определяется опытным путем. В качестве температуры Т 0 чаще всего используют Т 0 = 298,15 К, а также Т 0 = 293,15 К, Т 0 = О К. При этом теплоты образования самих элементов в стандартном - устойчивом - и наиболее распространенном природном состояниях принимают равными нулю. Выражение для расчета начального значения мольной энтальпии можно записать в виде

где (Н° т -Нт 0) - изменение энтальпии в результате протекания химических реакций.

При принятии за стандартную температуру Т 0 = О К теплота образования АН}т 0 превращается в чистую меру химической энергии.

Связь мольной энтальпии топлива с теплотой образования основана на законе Гесса, являющимся частным случаем закона сохранения энергии. Закон Гесса утверждает, что конечное значение теплоты образования при химическом превращении не зависит от того, какая последовательность реакции имела место, а определяется только параметрами состояния исходных характеристик и конечных продуктов реакции. В соответствии с этим законом теплота образования (или изменение энтальпии АН) процесса, связанного с химическими превращениями или изменениями состояния, может быть вычислена по соотношению

где v, - число молей вещества; АН} т - теплота образования вещества при температуре Т, равная изменению энтальпии при его образовании из элементов, взятых при этой температуре в стандартных состояниях.

Пример. Определить теплоту образования диэтил циклогексана, если известно, что при его сгорании в атмосфере кислорода выделяется 6320 кДж/моль:

Поскольку реакция горения диэтилциклогексана экзотермическая, то теплота образования реакции составляет:

Теплота образования кислорода при указанных условиях (Т = 293,15 К; р = 0,1 МПа) принята равной нулю (стандартные условия).

В расчетах теплоты образования и энтальпии следует обращать внимание на справочные данные по тепловым эффектам химических реакций, так как наряду с общепринятыми значениями тепловых эффектов встречаются значения тепловых эффектов при образовании воды в виде пара. В этом случае значение теплоты образования воды должно быть уменьшено на 44,2 кДж/моль, что соответствует теплоте парообразования.

Теплота образования при полном сгорании топлива, когда продуктами реакции являются полные окислы элементов (Н 2 0, С0 2 , А1 2 0 3 идр.), является теплотой сгорания топлива.

Существуют различные экспериментальные методы определения теплот образования, например метод калориметрирования или спектральный метод. Если теплота образования определяется калориметрическим методом, то принимают стандартную температуру Т 0 = 298 К или Т 0 = 293 К. Спектральный метод обладает большей точностью и является более простым. Суть этого метода состоит в том, что для отвода частей диссоциирующей молекулы на бесконечное расстояние друг от друга необходимо использовать энергию (теплоту образования). В связи с тем, что при таком разделении атомов энергия квантуется, изменению расстояния между ядрами при достаточно высокой температуре и переходу энергии с одного уровня на другой соответствует своя линия в спектре излучения. При этом полосы по мере увеличения расстояния между атомами приближаются друг к другу и стремятся к определенному пределу. Положение точки слияния полос дает энергетическую характеристику диссоциирующего вещества, т. е. позволяет определить теплоту образования вещества в стандартном состоянии. Для экспериментального определения теплоты сгорания сжигание топлива производят в среде с избытком окислителя. Различают теплоты сгорания топлива при выделении воды в виде жидкости или пара. Теплота сгорания при образовании воды в виде жидкости соответствует случаю, когда учитывается теплота, выделяющаяся при конденсации содержащихся в продуктах сгорания паров воды.

В ракетных двигателях горение топлива происходит, как правило, при недостатке окислителя. Тепловой эффект реакции горения в этих условиях без добавления кислорода из окружающей среды называют калорийностью. Различают высшую и низшую калорийность топлива при выделении воды в виде жидкости и в виде пара.

Поскольку определение теплоты сгорания топлива проводится обычно калориметрическим способом в бомбе Крекера (бомбе постоянного объема), экспериментальные значения как теплоты сгорания, так и калорийности соответствуют тепловыделению при образовании воды в виде жидкости. В РДТТ продукты сгорания топлива по всей проточной части обладают температурой, исключающей возможность конденсации воды, и поэтому высшая калорийность не может быть реализована. При наличии в продуктах сгорания соединений, которые при определенной температуре, имеющей место в проточной части РДТТ, могут претерпевать фазовые переходы, необходимо учитывать теплоту их конденсации. Обычно теплота фазовых переходов отражена в таблицах зависимости энтальпии от температуры. Энтальпия многокомпонентного топлива, состоящего из нескольких соединений, определяется по его массовому составу и исходным значениям полной энтальпии компонентов, содержащихся в топливе. Если топливо содержит т 1 , %, соединения с энтальпией H v т п, %, соединения с энтальпией Я п ит. д.,то общая энтальпия равна

Термохимия

Мольные теплоемкости газообразного монооксида углерода

Р е ш е н и е

Находим количество молей нагреваемого монооксида углерода (СО ):

n = g /M,

где g – масса диоксида углерода, в г; M = 28 г/моль – молярная масса СО ;

n = 50·10 3 /28 = 1785,71 моль.

Количество теплоты, которое необходимо для нагревания 50 кг газообразного монооксида углерода СО от температуры 298 К до температуры 600 К при P = const (изменение энтальпии), если для расчета используется стандартная теплоемкость или средняя теплоемкость данного вещества в интервале температур 298 – 600 К, рассчитываем по уравнению (1.11), соответственно:

ΔH = 1785,71·29,14· (600 – 298) = 15714747 Дж = 1,571· 10 4 кДж;

ΔH = 1785,71·29,99· (600 – 298) = 16173139 Дж = 1,617· 10 4 кДж.

Точный расчет производим с учетом экспериментально установленной зависимости теплоемкости от температуры. На основе справочных данных (табл. 1.1) устанавливаем вид уравнения C P = f(T):

C P = 28,41 + 4,10· 10 –3 Т – 0,46· 10 5 /T 2 ,

которое затем подставляем в уравнение (1.10):

1785,71· = 16175104 Дж = 1,618·10 4 кДж.

Химические реакции сопровождаются выделением или поглощением теплоты. Термохимия – это раздел физической химии, в котором изучаются тепловые эффекты химических и физико-химических процессов.

Тепловым эффектом химической реакции называется количество теплоты, которое выделяется или поглощается при необратимом протекании реакции, если осуществляется только работа расширения или сжатия, а исходные и конечные вещества имеют одинаковую температуру.

В соответствии с первым законом термодинамики тепловой эффект химической реакции, проходящей в изохорных условиях (Q V ), равен изменению внутренней энергии, а тепловой эффект химической реакции, проходящей в изобарных условиях (Q P ), равен изменению энтальпии:

Q V = ΔU; Q P = ΔH . (1.14)

Если реакция протекает в растворе или в твердой фазе, где изменение объема невелико, то

ΔH = ΔU + Δ(PV) ~ ΔU . (1.15)

Если в реакции участвуют идеальные газы, то при Т = const:

ΔH = ΔU + Δν · RT , (1.16)

где Δν – изменение числа молей газообразных веществ за счет прохождения химической реакции; R = 8,314 Дж/(моль·К) – универсальная газовая постоянная.



Химические реакции, проходящие с выделением теплоты, называются экзотермическими . Для этих реакций ΔH < 0 и ΔU < 0. Если химическая реакция протекает с поглощением теплоты, то она называется эндотермической (ΔH > 0, ΔU > 0).

Большинство химических процессов протекает при нормальном атмосферном давлении при условии P = const, поэтому рассмотрим подробно расчет изменений энтальпии при прохождении химических реакций.

1.4.1. Закон Гесса. Расчет тепловых эффектов химических реакций при стандартных условиях

Тепловые эффекты химических реакций можно определять экспериментально или рассчитывать теоретически на основе закона Гесса , который формулируется следующим образом: при постоянном давлении или объеме тепловой эффект химической реакции зависит от природы и состояния исходных веществ и продуктов реакции и не зависит от пути процесса . Другой формулировкой закона Гесса является следующее утверждение: тепловой эффект непосредственного превращения исходных реагентов в продукты реакции равен сумме тепловых эффектов промежуточных стадий .

Для сопоставления тепловых эффектов различных реакций используется представление о стандартном состоянии – это состояние чистого вещества при давлении 1 атм (1,013·10 5 Па) и температуре 25 о С (298,15 К). Символы термодинамических функций в стандартном состоянии обозначаются с верхним индексом «О » и указанием стандартной температуры. Например, стандартное изменение энтальпии (стандартный тепловой эффект при P = const) записывается следующим образом: ΔH O 298 .

Теоретически тепловые эффекты химических реакций рассчитывают, если известны тепловые эффекты других химических реакций, в которых участвуют данные вещества, с использованием следствий из закона Гесса.

Стандартной теплотой образования (энтальпией образования) вещества называется энтальпия реакции образования 1 моля этого вещества из элементов (простых веществ, то есть состоящих из атомов одного вида), находящихся в наиболее устойчивом стандартном состоянии. Стандартные энтальпии образования индивидуальных веществ (кДж/моль) приводятся в справочниках. При использовании справочных значений необходимо обращать внимание на фазовое состояние веществ, участвующих в реакции. Энтальпия образования наиболее устойчивых простых веществ равна 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам образования : стандартный тепловой эффект химической реакции равен разности теплот образования продуктов реакции и теплот образования исходных веществ с учетом стехиометрических коэффициентов (количества молей) реагентов :

CH 4 + 2 CO = 3 C (графит) + 2 H 2 O.

газ газ тв. газ

Теплоты образования веществ в указанных фазовых состояниях приведены в табл. 1.2.

Стандартная теплота сгорания () – тепловой эффект химической реакции сгорания 1 моль вещества до конечных продуктов сгорания (СO 2 , H 2 О, SO 2 , HCl, N 2 ).

Например, сгорание нитробензола можно теоретически представить в виде следующей реакции:

Теплоты сгорания используют для расчетов тепловых эффектов химических реакций, участниками которых являются органические соединения.

Второе следствие из закона Гесса : тепловой эффект химической реакции равен разности между суммарными теплотами сгорания исходных веществ и суммарными теплотами сгорания продуктов реакции

. (1.31)

Например, для реакции:

тепловой эффект химической реакции можно рассчитать:

Метод термохимических уравнений

Термохимическое уравнение – уравнение, в котором указывается агрегатное состояние веществ и тепловой эффект химической реакции.

Методом алгебраического сложения или вычитания термохимических уравнений можно определить тепловой эффект требуемой реакции, если известны тепловые эффекты других реакций получения этого продукта. Термохимические уравнения можно складывать, вычитать, умножать на любой коэффициент, то есть выполнять любые алгебраические действия.

Покажем применение метода термохимических уравнений на примере ряда реакций окисления железа. При окислении железа возможно образование оксида железа (III) по реакции:

Эта же реакция может осуществляться другим путем с образованием промежуточного продукта оксида железа (II):

Проведем алгебраическое сложение уравнений 2 и 3:

После сокращения одинаковых слагаемых получим:

Метод термохимических схем

Процесс возгонки льда можно представить в виде схемы:

Н 2 О(тв)ΔН возг H 2 O(г)


ΔН пл ΔН исп

Н 2 О(ж)

Согласно закону Гесса, тепловой эффект химической реакции не зависит от пути ее протекания, поэтому ΔН возг = ΔН пл + ΔН исп .

Пример 1.1. Рассчитайте теплоту аллотропного превращения: 1) аморфного углерода в графит; 2) графита в алмаз, если стандартные теплоты сгорания аморфного углерода, графита и алмаза соответственно равны: –409,2; –394,6 и –395,3 кДж/моль.

Решение:

Составляем термохимические уравнения сгорания аморфного углерода, графита и алмаза:

Уравнение реакции аллотропного перехода аморфного углерода в графит и графита в алмаз запишутся в виде:

Для вычисления вычтем из уравнения 1 уравнение 2; для вычисления вычтем из уравнения 2 уравнение 3, аналогичные алгебраические действия проводим и с тепловыми эффектами:

Пример 1.2 . Теплоты образования жидкой воды и газообразного диоксида углерода соответственно равны –285,8 и –393,5 кДж/моль. Теплота сгорания метана при тех же условиях равна –890,3 кДж/моль. Рассчитайте теплоту образования метана из элементов при условиях: 1) р=const ; 2) V=const, Т=298 К .

Решение:

Запишем термохимическое уравнение образования метана из элементов при (р=const ):

Запишем термохимические уравнения образования воды и диоксида углерода и термохимическое уравнение сгорания метана:

Для вычисления проведем следующие алгебраические действия с термохимическими уравнениями: Уравнение 2 умножим на 2, прибавим уравнение 3 и вычтем уравнение 4, получим уравнение 1.

Проверим это:

Аналогичные алгебраические действия проведем и с тепловыми эффектами:

При V=const : .

Для реакции изменение числа моль газообразных продуктов составит: .

Вопросы для самоконтроля

1. Сформулируйте положения первого начала термодинамики.

2. Приведите уравнения для расчета работы расширения идеального газа в различных термодинамических процессах.

3. Сформулируйте закон Гесса.

4. Что такое энтальпия?


Теплоемкость

Теплоемкость является одной из важных термических характеристик индивидуального вещества, которая широко используется при проведении многих термодинамических расчетов (тепловых балансов, химического равновесия и др.).

Теплоемкость – количество теплоты, необходимое для нагревания единичного количества вещества на 1 К.

Различают удельную и молярную теплоемкость.

Удельная теплоемкость – количество теплоты, необходимое для нагревания 1 г вещества на 1 К.

Удельная теплоемкость является экстенсивным термодинамическим параметром: теплоемкость 100 г воды в 100 раз больше теплоемкости 1 г воды (то есть количество теплоты, необходимое для нагревания 100 г вещества до той же самой температуры, в 100 раз больше, чем для 1г вещества). Единицы измерения удельной теплоемкости Дж/(г·К) .

Молярная теплоемкость – количество теплоты, необходимое для нагревания 1 моль вещества на 1 К.

Молярная теплоемкость является интенсивным термодинамическим параметром (не зависит от массы вещества). При физико-химических и термодинамических расчетах, как правило, используют молярную теплоемкость вещества. Единицы измерения молярной теплоемкости Дж/(моль·К) .

Молярная теплоемкость бывает истинная и средняя.

Истинная молярная теплоемкость (С ) – отношение бесконечно малого количества теплоты к бесконечно малому изменению температуры:

Средняя молярная теплоемкость () в интервале температур от Т 1 до Т 2 – отношение конечного количества теплоты, подведенного к 1 моль вещества, отнесенное к разности температур Т 2 – Т 1 :

. (1.33)

Средняя теплоемкость связана с истинной соотношением:

. (1.34)

Для вычисления истинной теплоемкости по средней используют соотношение:

. (1.35)

Большая величина теплоемкости означает, что данное количество теплоты вызовет лишь небольшое повышение температуры. Бесконечно большое значение теплоемкости означает, что, сколько бы теплоты ни подводили к системе, ее температура не изменится (например, при фазовом переходе – плавлении или испарении вещества).

В зависимости от условий нагревания или охлаждения вещества различают истинную молярную теплоемкость при постоянном объеме С V и истинную молярную теплоемкость при постоянном давлении С Р :

, (1.36)

. (1.37)

В расчетах С Р определяют по опытным данным для С V и наоборот.

Стандартные условия

Тепловые эффекты реакций зависят от условий, при которых они протекают. Поэтому, для того чтобы можно было сравнивать полученные значения тепловых эффектов реакций, энтальпии образования веществ, условились определять или приводить их к определенным, одинаковым, так называемым, стандартным условиям. Стандартными условиями принято считать состояние 1 моль чистого вещества при давлении 101 325 Па (1 атм или 760 мм рт. ст.) и температуре 25°С или 298 К. Для веществ, находящихся в растворе, за стандартную концентрацию принимают концентрацию равную один моль в литре (С = 1 моль/л). Причем предполагается, что раствор ведет себя при этой концентрации точно так же, как и при бесконечном разбавлении, т.е. является идеальным. Это же предположение относится и к веществам, которые находятся в газообразном состоянии (газ как бы является идеальным и при давлении в 1 атмосферу, и при давлении значительно более низком).

Стало быть, изменение энтальпии реакционной системы при переходе из одного состояния в другое при стандартных условиях также будет носить стандартный характер. Поэтому энтальпия образования одного моля сложного вещества из простых веществ при стандартных условиях тоже будет называться стандартной энтальпией (теплотой ) образования.

Стандартные изменения энтальпии образования обозначают ДЯ (^ р. В дальнейшем будем их называть просто стандартными энтальпиями образования веществ или энтальпиями реакции (опуская слово изменение). Например, стандартная энтальпия образования воды в жидком состоянии обозначается так:

Эта запись означает, что в стандартных условиях образование одного моль воды в жидком состоянии из простых веществ сопровождается потерей реагирующей системой 285,85 кДж. Запись термохимического уравнения этой реакции выглядит так:

Стандартные энтальпии образования для большинства известных веществ определены опытным путем или рассчитаны и сведены в справочные таблицы термодинамических свойств веществ.

Стандартные значения энтальпий образования простых веществ (например, Н 2 (г), O 2 (г), Сu (кр) и других веществ) для тех агрегатных состояний, в которых эти вещества устойчивы, принимаются равными нулю, т.е.

Стандартная энтальпия образования соединения является мерой его термодинамической устойчивости, прочности, и носит периодический характер для одного класса, группы однотипных веществ.

Иногда в выборе стандартного состояния бывают исключения, например, когда мы говорим о стандартной теплоте образования парообразной воды, мы подразумеваем, что образуется водяной пар, давление которого равно 101,3 кПа, а температура 25°С. Но при 25°С водяной пар имеет значительно более низкое равновесное давление. Значит, теплота образования воды в парообразном состоянии Дц 2 о(„) это чисто условное состояние.

Термохимические законы

Закон Гесса

Независимость теплоты химической реакции от пути процесса при р = const и Т = const была установлена в первой половине XIX в. русским ученым Г. И. Гессом. Гесс сформулировал закон, который носит сейчас его имя: тепловой эффект химической реакции не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции.

Этот закон справедлив для тех взаимодействий, которые протекают в изобарно-изотермических (или изохорно-изотермических) условиях, при том, что единственным видом совершаемой работы является работа против сил внешнего давления.

Представим себе, что имеется реакционная система, в которой вещества А и В превращаются в продукты D и Е, согласно термохимическому уравнению:

Изменение энтальпии этой реакции АH^ еакци. Продукты реакции D и Е можно получить прямо и непосредственно из исходных веществ А и В , как это схематически представлено на рис. 2.2, а по пути 1-2, минуя какие- либо промежуточные стадии. Тепловой эффект при этом способе превращения (рис. 2.2, 6) будет равен:

Получить те же самые продукты D и Е можно, осуществив процесс через образование каких-либо промежуточных веществ, например, по пути 1 -3 4-5-2 или 1-6-7-2 (рис. 2.2, а). Причем каждая стадия образования

промежуточных веществ будет характеризоваться своим тепловым эффектом или изменением энтальпии: ДН 1 , ДH 2 , ДH 3 , ДH 4 , ДH 5 , ДH 6 , и ДH 7 , соответственно, для каждого участка пути процесса (рис. 2.2, б).

Рис. 2.2. :

а - возможные пути проведения процесса; б - схемы изменения энтальпий промежуточных стадий в зависимости от пути реакции

Если же рассмотреть конечный итог энергетических изменений процесса через промежуточные стадии, то окажется, что он равен алгебраической сумме изменения энтальпий промежуточных стадий:

То есть тепловой эффект реакции не зависит от способа проведения процесса, а зависит лишь только от начального состояния исходных веществ и конечного состояния продуктов реакции (рис. 2.2, б).

На конкретной реакции, например, окисления железа кислородом, проверим выполнимость закона Гесса. Термохимическое уравнение этого процесса:

Проведем этот процесс по стадиям. Вначале окислим железо до оксида жeлеза(П) согласно уравнению:

I стадия :

с тепловым эффектом 2 263,7 кДж, а затем окислим оксид жeлеза(И) по второй стадии до оксида железа (III) согласно уравнению:

II стадия-.

в которой выделится 293,9 кДж. Складывая уравнения первой и второй стадии реакций, получим:

Суммарный тепловой эффект этих стадий также равен 821,3 кДж, как если бы проводили процесс без промежуточных стадий. То есть закон Гесса выполняется.

Термохимические уравнения можно складывать и вычитать, как обычные алгебраические уравнения.

Рассмотрим иллюстрацию закона Гесса еще на одном примере.

Известно:

Найти ДH° для следующих реакций:

На основании исходных данных удобно составить схему возможных путей образования С0 2 (рис. 2.3).

Рис. 2.3.

По закону Гесса

К такому же результату можно прийти, учитывая, что уравнение реакции (3) можно получить, вычитая из уравнения (1) уравнение (2). Аналогичная операция с тепловыми эффектами даст

Для получения уравнения (4) надо вычесть из уравнения (1) уравнение (2), умноженное на 2. Поэтому

Для практического использования важны следствия из закона Гесса. Рассмотрим два из них.

Первое следствие из закона Гесса

Это следствие связано с теплотами образования соединений. Теплотой (энтальпией) образования соединения называется количество теплоты,

выделяемой или поглощаемой при образовании 1 моля этого соединения из простых веществ, находящихся в наиболее устойчивом состоянии при данных условиях. (Простые вещества состоят из атомов одного вида, например, N 2 , Н 2 , 0 2 , С, S, Fe и др.) При этом реакция может оказаться гипотетической, т.е. не протекать реально. Например, теплота образования карбоната кальция равна тепловому эффекту реакции образования 1 моля кристаллического карбоната кальция из металлического кальция, углерода в виде графита и газообразного кислорода:

Теплоты (энтальпии) образования устойчивых простых веществ (N 2 , Н 2 , 0 2 , Fe и др.) равны нулю.

Обозначим теплоту образования вещества ДЯ оГ)р

В соответствии с первым следствием из закона Гесса по тенлотам (энтальпиям) образования можно рассчитать тепловой эффект любой реакции: тепловой эффект реакции равен разности между теплотами (энтальпиями) образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов.

(2.11)

Здесь подстрочные значки j и і относятся соответственно к продуктам реакции и исходным веществам; v - стехиометрические коэффициенты.

Схема на рис. 2.4 иллюстрирует доказательство этого следствия. Уравнение (2.11) следует из правила сложения векторов.

Рис. 2.4.

Как сказано в п. 2.4, теплоты образования обычно относят к стандартным условиям и называют стандартной теплотой (энтальпией) образования соединения и обозначают АHоб р. Величины АНоб р наиболее распространенных соединений приведены в термодинамических справочных таблицах. С их помощью рассчитываются стандартные тепловые эффекты химических реакций АН 0:

Второе следствие из закона Гесса

Заметим, что во всех вышеприведенных примерах использовались стандартные энтальпии (теплоты) образования индивидуальных веществ. Но для некоторых соединений их определить непосредственно опытным путем не удается, если исходить только из простых веществ. В таких случаях используют закон Г. И. Гесса для расчета стандартных энтальпий (теплот) образования по известным энтальпиям (теплотам) сгорания этих веществ, поскольку в большинстве этих случаев удается осуществить реакцию полного сгорания простых и сложных веществ.

При этом под теплотой сгорания понимают тепловой эффект сгорания 1 моль сложного вещества (или 1 моль атомов простого вещества) до образования устойчивых оксидов.

Стандартные теплоты сгорания относят к 25°С (298 К) и давлению

  • 101.3 кПа. За ноль принимаются теплоты сгорания кислорода и продуктов сгорания в их устойчивом состоянии при стандартных условиях (25°С,
  • 101.3 кПа), т.е. считают энергосодержание газообразных кислорода, азота, двуокиси углерода, двуокиси серы, жидкой воды и других негорючих веществ условно равными нулю.

Практическое значение знания теплот сгорания веществ состоит в том, что по их величинам можно рассчитать тепловые эффекты химических реакций подобно тому, как это делается при использовании энтальпий (теплот) образования веществ. Ведь тепловой эффект реакции не зависит от способа ее проведения, промежуточных стадий, а определяется лишь начальным и конечным состоянием исходных веществ и продуктов реакции согласно закону Гесса. Особенно большое практическое значение теплоты сгорания имеют для определения тепловых эффектов реакций, в которых участвуют органические соединения. Например, теплоту образования метана из простых веществ

непосредственно измерить не удается. Чтобы определить теплоту образования органического вещества, его сжигают и, исходя из теплоты сгорания сложного органического вещества и теплот сгорания простых веществ, находят его теплоту образования. Связь между теплотой образования метана и теплотами сгорания продуктов реакции видна на схеме (рис. 2.5).

Согласно закону Гесса, тепловые эффекты первого и второго пути должны быть равны

Теплота сгорания простого вещества, например, графита и водорода до устойчивого оксида, т.е. до образования углекислого газа или воды, тождественна теплоте образования углекислого газа или воды:

Рис. 2.5.

Принимая это во внимание, получим:

Подставляя численные значения соответствующих теплот образования в уравнение, получим:

В некоторых термодинамических справочниках приводятся таблицы с изобарными теплотами сгорания - A//J rop многих органических веществ, которыми можно воспользоваться при расчетах. Однако, если в реакции участвуют негорючие вещества, то тепловой эффект может быть определен только через теплоты образования. Например:

при стандартных условиях тепловой эффект равен:

т.е. данная реакция экзотермическая Q= +168,07 кДж/моль.

Закон Гесса и его следствия служат основой для всех термохимических расчетов, при этом необходимо, чтобы все теплоты сгорания или образования относились к одинаковым условиям - изобарным или изохорным. В термодинамических таблицах приводятся значения АН образования или сгорания при стандартных условиях (/? = 101,3 кПа и Т = 298 К), т.е. для изобарно-изотермического процесса.

Для перехода от Qp к Qn необходимо пользоваться уравнением:

Химические превращения пищевых веществ в организме, как и любые химические реакции вне организма, подчиняются законам термохимии. Следовательно, закон Гесса дает основание использовать теплоты сгорания пищевых веществ для представления об энергии окисления их в организме. Хотя питательные вещества, вводимые в организм, проходят до своего конечного превращения сложный путь и участвуют в большом количестве реакций, суммарный энергетический эффект всех этих реакций по закону Гесса равен тепловому эффекту непосредственного сжигания введенных веществ.

Например, при сжигании одного моль глюкозы (до углекислого газа и воды) в калориметрической бомбе выделяется 2816 кДж, значит при полном окислении и в организме одного моля глюкозы выделяется количество энергии, эквивалентное 2816 кДж. Пути окисления глюкозы в калориметрической бомбе и организме различны, но энергетический эффект в обоих случаях один и тот же, так как начальное и конечное состояния участвующих в реакции веществ одинаковы.

Термохимические расчеты

Термохимические расчеты, связанные с определением тепловых эффектов реакций, теплот образования соединений, дают возможность в какой-то степени предсказать и вероятное направление процесса, и приближенно охарактеризовать прочность соединения. Все расчеты основываются на двух законах термохимии и на ее основных понятиях и определениях.

Рассмотрим несколько конкретных примеров термохимических расчетов.

Пример 2.1 . Найти стандартный тепловой эффект А// 0 реакции получения кристаллического Al2(SO4)3 при 298 К из кристаллического А1 2 0 3 и газообразного S0 3:

Стандартные энтальпии образования веществ, участвующих в данной реакции, при 298 К составляют:

Тогда по уравнению (2.12) находим

Решение. Запишем термохимическое уравнение горения метана

Из справочника термодинамических свойств веществ выпишем стандартные значения энтальпий образования (теплот образования) исходных веществ и продуктов реакций:

Поскольку в процессе горения метана образуются диоксид углерода (1 моль) и вода (2 моль) в жидком состоянии, составим термохимические уравнения образования этих веществ из простых веществ:

A так как при горении метан СН 4 (г), разлагается, превращаясь в воду в жидком состоянии и диоксид углерода, запишем термохимическое уравнение разложения метана на простые вещества:

Сложив эти три последних уравнения, получим термохимическое уравнение реакции горения метана:

Таким образом, тепловой эффект этой реакции при стандартных условиях равен Q°„ = 890,94 кДж/моль или изменение энтальпии реакции составляет ДH° кцнн = = -890,94 кДж/моль.

Если внимательно посмотреть на то, каким образом получилось это численное значение, то окажется, что из суммы теплот образования продуктов реакции вычиталась сумма теплот образования исходных веществ. Это следствие из закона Гесса, которое можно записать таким образом:

Или применительно к понятию изменения энтальпии реакции:

Применительно к нашей задаче тепловой эффект реакции можно рассчитать, не составляя уравнений образования и разложения веществ:

Или, подставляя численные данные, получим:

Аналогичный расчет можно провести, используя не теплоты образования, а энтальпии:

Пример 2.3. Вычислить тепловой эффект реакции:

Энтальпии сгорания равны:

для ацетилена (г) ДH а = -1298,3 кДж/моль; для бензола (ж) АН" = -3264,2 кДж/моль.

По уравнению (2.13) находим

Зная теплоту сгорания, легко определить теплоты образования, и наоборот. Если, например, теплота сгорания метилового спирта равна -729 кДж/моль, то, пользуясь значениями теплоты образования С0 2 и Н 2 0, можно составить следующие термохимические уравнения:

)

Умножая уравнение (в) на 2, складывая с уравнением (б) и вычитая уравнение (a), получим после преобразований реакцию образования метилового спирта

Проведя аналогичные преобразования с тепловыми эффектами реакций, получим тепловой эффект образования метилового спирта АН

Закон Гесса справедлив и для сложных биохимических процессов. Так, количество теплоты, получаемой при окислении углеводов и жиров в живом организме, где эти процессы протекают в несколько стадий, и количество теплоты, выделяемое при сжигании этих веществ в кислороде, оказались равными. Для белков это не так, так как конечным продуктом окисления белка в организме является карбамид, в кислороде же окисление белка полное.

Из закона сохранения энергии следует, что, когда вещество образуется из атомов и (или) более простых веществ, внутренняя энергия или энтальпия системы меняется на определенную величину, называемую теплотой образования данного вещества. Теплота образования может быть определена различными способами, в том числе прямыми калориметрическими измерениями и путем косвенного расчета (на основе закона Гесса) из теплоты реакции, в которой участвует данное вещество. При проведении расчетов пользуются стандартными (при p = 1 атм и T = 298 K) теплотами образования веществ, входящих в уравнение реакции. Например, стандартную теплоту (энтальпию) образования метана можно вычислить с помощью термохимического уравнения

Хотя эта реакция практически неосуществима при 25 С, стандартная теплота образования метана косвенно рассчитывается по измеренным теплотам сгорания метана, водорода и графита. На основе закона Гесса устанавливается, что теплота реакции равна разности между теплотами сгорания веществ, указанных в левой части уравнения, и теплотами сгорания веществ, указанных в правой части уравнения реакции (взятых с соответствующими знаками и стехиометрическими коэффициентами).

Помимо использования термохимических данных для решения проблем практического использования тепловой энергии, они широко применяются при теоретической оценке энергий химических связей.

Тепловой эффект реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции .

Закон лежит в основе термохимических расчетов. Рассмотрим реакцию сгорания метана:

Эту же реакцию можно провести через стадию образования СО:

Итак, видно, тепловой эффект реакции, протекающей по двум путям, одинаков.

При термохимических расчетах для определения тепловых эффектов применяют следствия из закона Гесса.

8. Второе начало термодинамики. Энтропия.

Состояние некоторого количества вещества можно охарактеризовать, указав, например, температуру, давление – это характеристики макросостояния или указать мгновенные характеристики каждой частицы вещества – ее положение в пространстве (x i , y i , z i) и скорости перемещения по всем направлениям (v x , v y , v z) – это характеристики микросостояния вещества. Так как вещество состоит из огромного числа частиц, то данному макросостоянию отвечает огромное число микросостояний.Число микросостояний, которое соответствует данному макросостоянию вещества, называется термодинамической вероятностью состояния системы – W.

Величина W есть число различных способов, посредством которых реализуется данное состояние вещества. Макросостояние тем вероятнее, чем большим числом микросостояний оно осуществляется. Так для системы из 10 молекул W близко к 10000. Оказалось удобнее и проще характеризовать состояние системы не самой вероятностью осуществления данного макросостояния, а величиной, пропорциональной ее логарифму.

Загрузка...
Top