Опередил свое время: Антигравитационная платформа Гребенникова. Гравитоплан - изобретение или вымысел В.Гребенникова (видео) Виктор гребенников создатель торсионной доски

Виктор Степанович Гребенников - ученый-естествоиспытатель, профессиональный энтомолог, художник и просто всесторонне развитый человек с широким спектром интересов.

Многим он известен как первооткрыватель эффекта полостных структур (ЭПС). Но далеко не все знакомы с его другим открытием, также заимствованным из числа сокровенных тайн живой Природы.

Еще в 1988 г. им были обнаружены антигравитационные эффекты хитиновых покровов некоторых насекомых. Но наиболее впечатляющий сопутствующий феномен данного явления - это феномен полной или частичной невидимости или искаженного восприятия материального объекта, находящегося в зоне компенсированной гравитации.

На основе этого открытия, с использованием бионических принципов, автор сконструировал и построил антигравитационную платфому, а также практически разработал принципы управляемого полета со скоростью до 25 км/мин. С 1991-92 года устройство использовалось автором как средство быстрого передвижения.

Многое описано им в замечательной книге "Мой мир" (В ней он собирался описать и подробное устройство гравилёта и как его сделать. Не дали!..)

Да и смерть его вызывает вопросы. Официально - облучился неизвестными облучениями при опытах со своей платформой.

Кто из нас не мечтал о свободном полете… Без каких-либо двигателей, без сложных и дорогих устройств, без массивных машин, в которых есть лишь маленькое свободное пространство для пилота, не зависеть ни от каких погодных условиях. Как во сне, просто взять и полететь.

Когда я был маленьким, я с удивлением обнаружил, что такое, оказывается, возможно. Ну, не почти такое, конечно, устройство все-таки было необходимо, но оно отвечало почти всем требованиям. А поразила меня до глубины души статься в журнале «Техника молодежи», № 4 за 1993. В ней рассказывалось, что энтомолог Виктор Гребенников изготовил самый настоящий антиграв из крыльев бабочки. Эх… сколько бабочек тогда погибло из-за того, что я пытался обнаружить ту, что описывалась в этой статье.

В общем, предлагаю вам эту заметку из журнала плюс еще небольшую информацию для размышления:

Летом 1988 года, разглядывая в микроскоп хитиновые покровы насекомых, перистые их усики, тончайшие по структуре чешуйки крыльев бабочки, ажурные с радужным переливом крылья златоглазок и прочие Патенты Природы, я заинтересовался необыкновенно ритмичной микроструктурой одной из довольно крупных деталей. То была чрезвычайно упорядоченная, будто выштампованная на каком-то сложном автомате, композиция. На мой взгляд, такая ни с чем несравнимая ячеистость явно не требовалась ни для прочности этой детали, ни для ее украшения.

Ничего подобного, даже отдаленно напоминающего столь непривычный удивительный микроузор, я не наблюдал ни в природе, ни в технике или искусстве. Оттого, что он объемно многомерен, повторить его на плоском рисунке или фото мне до сих пор не удалось. Зачем понадобилась такая структура в нижней части надкрыльев? Тем более что почти всегда она спрятана от взора и нигде, кроме как в полете, ее не разглядишь.

Я заподозрил: не волновой ли это маяк, специальное устройство, испускающее некие волны, импульсы? Если так, то «маяк» должен обладать «моим» эффектом многополостных структур. В то поистине счастливое лето насекомых этого вида было очень много, и я ловил их вечерами на свет.

Положил на предметный столик микроскопа небольшую вогнутую хитиновую пластинку, чтобы еще раз рассмотреть ее странно-звездчатые ячейки при сильном увеличении. Полюбовался очередным шедевром Природы-ювелира и почти безо всякой цели положил было на нее пинцетом другую точно такую же пластинку с необыкновенными ячейками на одной из ее сторон.

Но не тут-то было: деталька вырвалась из пинцета, повисела пару секунд в воздухе над той, что на столике микроскопа, немного повернулась по часовой стрелке, съехала — по воздуху! — вправо, повернулась против часовой стрелки, качнулась и лишь тогда быстро и резко упала на стол. Что я пережил в тот миг — читатель может лишь представить…

Итак, мы имеем поток частиц, разнородный по скоростям, с разным магнитным моментом, разными массовыми характеристиками.

Примем как условие, что источник потока - солнце, и плотность потока в радиальных направлениях одинакова и не зависит от свойств окружающих планет.

Вторым условием будет открытая Гребенниковым закономерность в распределении плотностей частиц при прохождении через полостные структуры или отражении потока от полостных структур - дисперсия.

Третьим условием примем то, что планета Земля по сути представляет собой также полостную структуру сферосимметричную по распределению плотности электропроводимости слоев.

Тогда из этих условий следуют выводы:

Отраженные Землей потоки частиц образуют сферические зоны с равной плотностью распределения (эквипотенциальные) не только на больших высотах, но и на малых или на больших, также, как и на малых, над поверхностью Земли.

Эквипотенциальные зоны можно использовать для перемещения вокруг планеты по круговым траекториям с минимальной затратой энергии на перемещение.

Возможно построить искусственную полостную структуру с управляемыми свойствами (параметры геометрических форм) для формирования отраженного или пропущенного сквозь нее потока с целью получения фокусированных, устойчивых зон максимума энергии.

Интерференция потоков от искусственной полостной структуры и от Земли даст систему волновых структур, противодействующих полю тяготения Земли.

ПРАКТИКА

Переход от теории к практике начнем с простого опыта - пучок коктельных трубочек одинаковой длины плотно скрутим скотчем так, чтобы торцы сформировали две параллельных плоскости. Мы получили набор фазированных волноводов - полостную структуру. Теперь направим один конец на солнце, а к другому поднесём ладонь - ощущается движение потока, похожее на слабый ветерок.

Вот этот "ветерок" нам необходимо усилить, желательно почти до урагана.

Поэтому применим ускоритель частиц, известный как "ускоритель Альвареса" или линейный ускоритель.

Линейные ускорители

Возможность применения высокочастотных электрических полей в длинных многокаскадных ускорителях основана на том, что такое поле изменяется не только во времени, но и в пространстве. В любой момент времени напряженность поля изменяется синусоидально в зависимости от положения в пространстве, т.е. распределение поля в пространстве имеет форму волны. А в любой точке пространства она изменяется синусоидально во времени. Поэтому максимумы поля перемещаются в пространстве с так называемой фазовой скоростью. Следовательно, частицы могут двигаться так, чтобы локальное поле все время их ускоряло.

В линейных ускорительных системах высокочастотные поля были впервые применены в 1929, когда норвежский инженер Р. Видероэ осуществил ускорение ионов в короткой системе связанных высокочастотных резонаторов. Если резонаторы рассчитаны так, что фазовая скорость поля всегда равна скорости частиц, то в процессе своего движения в ускорителе пучок непрерывно ускоряется. Движение частиц в таком случае подобно скольжению серфера на гребне волны. При этом скорости протонов или ионов в процессе ускорения могут сильно увеличиваться. Соответственно этому должна увеличиваться и фазовая скорость волны vфаз. Если электроны могут инжектироваться в ускоритель со скоростью, близкой к скорости света с, то в таком режиме фазовая скорость практически постоянна: vфаз = c.

Другой подход, позволяющий исключить влияние замедляющей фазы высокочастотного электрического поля, основан на использовании металлической конструкции, экранирующей пучок от поля в этот полупериод. Впервые такой способ был применен Э. Лоуренсом в циклотроне, он используется также в линейном ускорителе Альвареса. Последний представляет собой длинную вакуумную трубу, в которой расположен целый ряд металлических дрейфовых трубок. Каждая трубка последовательно соединена с высокочастотным генератором через длинную линию, вдоль которой со скоростью, близкой к скорости света, бежит волна ускоряющего напряжения (рис. 2). Таким образом, все трубки по очереди оказываются под высоким напряжением. Заряженная частица, вылетающая из инжектора в подходящий момент времени, ускоряется в направлении первой трубки, приобретая определенную энергию. Внутри этой трубки частица дрейфует – движется с постоянной скоростью. Если длина трубки правильно подобрана, то она выйдет из нее в тот момент, когда ускоряющее напряжение продвинулось на одну длину волны. При этом напряжение на второй трубке тоже будет ускоряющим и составляет сотни тысяч вольт. Такой процесс многократно повторяется, и на каждом этапе частица получает дополнительную энергию. Чтобы движение частиц было синхронно с изменением поля, соответственно увеличению их скорости должна увеличиваться длина трубок. В конце концов скорость частицы достигнет скорости, очень близкой к скорости света, и предельная длина трубок будет постоянной.

Пространственные изменения поля налагают ограничение на временную структуру пучка. Ускоряющее поле изменяется в пределах сгустка частиц любой конечной протяженности. Следовательно, протяженность сгустка частиц должна быть мала по сравнению с длиной волны ускоряющего высокочастотного поля. (условие1) Иначе частицы будут по-разному ускоряться в пределах сгустка.

Слишком большой разброс энергии в пучке не только увеличивает трудности фокусировки пучка из-за наличия хроматической аберрации у магнитных линз, но и ограничивает возможности применения пучка в конкретных задачах. Разброс энергий может также приводить к размытию сгустка частиц пучка в аксиальном направлении.

Рассмотрим сгусток нерелятивистских ионов, движущихся с начальной скоростью v0. Продольные электрические силы, обусловленные пространственным зарядом, ускоряют головную часть пучка и замедляют хвостовую. Синхронизируя соответствующим образом движение сгустка с высокочастотным полем, можно добиться большего ускорения хвостовой части сгустка, чем головной. Таким согласованием фаз ускоряющего напряжения и пучка можно осуществить фазировку пучка – скомпенсировать дефазирующее влияние пространственного заряда и разброса по энергии. В результате в некотором интервале значений центральной фазы сгустка наблюдаются центрирование и осцилляции частиц относительно определенной фазы устойчивого движения. Это явление, называемое автофазировкой, чрезвычайно важно для линейных ускорителей ионов и современных циклических ускорителей электронов и ионов. К сожалению, автофазировка достигается ценой снижения коэффициента заполнения ускорителя до значений, намного меньших единицы.

В процессе ускорения практически у всех пучков обнаруживается тенденция к увеличению радиуса по двум причинам: из-за взаимного электростатического отталкивания частиц и из-за разброса поперечных (тепловых) скоростей. (условие2)

Первая тенденция ослабевает с увеличением скорости пучка, поскольку магнитное поле, создаваемое током пучка, сжимает пучок и в случае релятивистских пучков почти компенсирует дефокусирующее влияние пространственного заряда в радиальном направлении. Поэтому данный эффект весьма важен в случае ускорителей ионов, но почти несуществен для электронных ускорителей, в которых пучок инжектируется с релятивистскими скоростями. Второй эффект, связанный с эмиттансом пучка, важен для всех ускорителей.

Удержать частицы вблизи оси можно с помощью квадрупольных магнитов. Правда, одиночный квадрупольный магнит, фокусируя частицы в одной из плоскостей, в другой их дефокусирует. Но здесь помогает принцип "сильной фокусировки", открытый Э. Курантом, С. Ливингстоном и Х. Снайдером: система двух квадрупольных магнитов, разделенных пролетным промежутком, с чередованием плоскостей фокусировки и дефокусировки в конечном счете обеспечивает фокусировку во всех плоскостях.

Дрейфовые трубки все еще используются в протонных линейных ускорителях, где энергия пучка увеличивается от нескольких мегаэлектронвольт примерно до 100 МэВ. В первых электронных линейных ускорителях типа ускорителя на 1 ГэВ, сооруженного в Стэнфордском университете (США), тоже использовались дрейфовые трубки постоянной длины, поскольку пучок инжектировался при энергии порядка 1 МэВ. В более современных электронных линейных ускорителях, примером самых крупных из которых может служить ускоритель на 50 ГэВ длиной 3,2 км, сооруженный в Стэнфордском центре линейных ускорителей, используется принцип "серфинга электронов" на электромагнитной волне, что позволяет ускорять пучок с приращением энергии почти на 20 МэВ на одном метре ускоряющей системы. В этом ускорителе высокочастотная мощность на частоте около 3 ГГц генерируется большими электровакуумными приборами – клистронами.

Протонный линейный ускоритель на самую высокую энергию был построен в Лос Аламосской национальной лаборатории в шт. Нью-Мексико (США) в качестве "мезонной фабрики" для получения интенсивных пучков пионов и мюонов. Его медные резонаторы создают ускоряющее поле порядка 2 МэВ/м, благодаря чему он дает в импульсном пучке до 1 мА протонов с энергией 800 МэВ.

Для ускорения не только протонов, но и тяжелых ионов были разработаны сверхпроводящие высокочастотные системы. Самый большой сверхпроводящий протонный линейный ускоритель служит инжектором ускорителя на встречных пучках ГЕРА в лаборатории Немецкого электронного синхротрона (ДЕЗИ) в Гамбурге (Германия).

Для выполнения условия о минимальной длине пучка заменим диэлектрические трубки на шелковую ткань, а металлические дрейфовые трубки ускорителя на пластины. Тогда для формирования потока с максимальной плотностью и интенсивностью на выходе из структуры (пакета пластин) должен меняться размер пластин и диаметр отверстий от минимального на входе до максимального на выходе. (по условию 2)

Здесь получаются интересные вещи - диаметр отверстий идеально вписывается в ряд Фиббоначи от 0.1 мм до 55 мм, а расстояние между пластинами пропорционально известному ряду Тициуса-Боде, пропорционально расстоянию от соответсвующих планет до солнца. (Расстояние между пластинами – параметр регулируемый, о настройке будет сказано ниже)

Таким образом, изолировав боковые поверхности текстолитом 4 мм, мы получили пирамидальную конструкцию ускорителя.

Теперь нужно продумать схему питания ускорителя.

Блок-схему питания ускорителя я привожу ниже, устройство может быть собрано из доступных деталей, за исключением "шумового генератора". Он предназначен для того чтобы выполнялись условия 1 и 2, а также потому, что спектр масс частиц и их зарядов нам известен не точно, поэтому спектр ускоряющих волн ВЧ должен быть максимально широким. (схема шумового генератора предложена Корякин-Черняк Л.А.)

Электрическая схема такого широкополосного генератора шума ЗЧ на двух транзисторах:

Собственно источником шума в ней служит стабилитрон VD2, на транзисторе VT1 выполнен широкополосный усилитель шумового напряжения, а на транзисторе VT2 — эмиттерный повторитель для согласования генератора с 50-омной нагрузкой.

В отличие от других схем генератора шума, источник шума на стабилитроне VD2 в этой схеме включен не в цепь базы транзистора VT1, а в цепь эмиттера. База транзистора VT1 по переменному току соединена с общим проводом схемы конденсаторами С1 и С2. Таким образом, транзистор VT1 в усилительном каскаде включен по схеме с общей базой. Поскольку схема с общей базой лишена главного недостатка схемы с общим эмиттером — эффекта Миллера, то такое включение обеспечивает максимальную широкополосность усилителя шумового напряжения для данного типа транзистора.

А такой недостаток схемы с общей базой, как высокое выходное сопротивление, компенсируется затем эмиттерным повторителем на транзисторе VT2. В итоге выходное сопротивление генератора шума составляет около 50 Ом (более точно устанавливается подбором резистора R6).

Режимы работы транзисторов VT1, VT2 и стабилитрона VD2 по постоянному току устанавливаются резисторами R2, R3 и R5:
напряжение на базе транзистора VT1, равное половине напряжения питания, устанавливается состоящим из двух одинаковых резисторов R1 и R2 делителем напряжения;
ток через стабилитрон VD2 устанавливается резистором R5.

Нижний по схеме вывод стабилитрона VD2 по переменному току соединен с общим проводом схемы конденсаторами СЗ и С5. Дроссель L1 несколько поднимает усиление по напряжению усилителя на транзисторе VT1 и тем самым в некоторой степени компенсирует падение уровня шумового сигнала на частотах выше 2 МГц. Светодиод VD1 служит для индикации включения питания генератора шума выключателем SA1.

Данный шумовой генератор используется как задающий, от него сигнал поступает на промежуточный или согласующий трансформатор, далее на конвертор. Выход шумового генератора можно дополнить еще одним эмитерным повторителем для усиления тока.

Конвертор может быть любым выпускаемым промышленно, главное требование к нему - выдавать он должен не чистый синус, а т. н. "модифицированный" - усредненую высокочастотную, ШИМ копию, и чем грубее дискретизация, грубее копия – тем лучше. Принципиально применение ШИМ-модуляции сигнала, так как на нагрузке (пакете пластин) мы должны получить нелинейные продукты модуляции. (по условиям 1, 2 из конструкции умножителя)

В первом приближении вся система представляет собой резонансный контур с регулировкой частоты (трансформаторы - как L, набор пластин ускорителя как - C), запитанный от умножителя.

В качестве питающего ускоритель трансформатора используется трансформатор для питания неоновых трубок 10-15 кВ с максимально допустимым током по выходу.

Блок-схема питания пластин ускорителя:

Конструкция пластин-ускорителей.

Всего пластин 10. Первая пластина представляет собой "бутерброд" из двух сеток от советских кинескопов, где между ними располагается шёлковая ткань в 1 слой. Сетки сшиты рыболовной леской. На нижнюю сетку подается + с вывода умножителя, верхняя сетка соединена с нижней через резистор 200 Ом.

Последующие пластины имеют 6 соосных отверстий, в последней пластине остается только 6 отверстий диаметром 5,5 см. На остальных пластинах по площади добавлены еще отверстия по ряду Фибоначчи, несоосны, это сделано для накапливания частиц, т.е. своеобразный накопитель-резонатор.

Регулировка расстояний (вписывается в ряд Тициуса-Боде) между пластинами:

Между первой и второй пластиной 1-2 мм, чтобы не было пробоя. Потом подать с конвертора 220В на 2 и 3 пластины, изменяя расстояние, добиться эффекта "гудения улья", затем дать напряжение на 3 и 4 пластины и т.д. В результате все должны гудеть, это признак согласованной работы. Когда пакет согласован, подаем напряжение по схеме, с умножителя.

Сетки ускорителя крепятся к каркасу текстолитовыми болтами с текстолитовыми гайками М12,по длинной оси болта сквозное отверстие для провода диаметром 4мм. Оси болтов располагаются в плоскости сетки и смотрят в центр сетки. Сетка посредством закручивания текстолитовых гаек в каркасе и выдвигания текстолитовых болтов, прикрепленных к краям сетки, должна быть натянута в лучшем случае до состояния струны, к этому нужно стремиться.

Умножитель (диоды - КЦ на15 кВ, плоские керамические конденсаторы -1.0, 1.75, 2.0, 2.4, 3.0, 5.0, 15.0, 15.0, 15.0, все конденсаторы на 15 кВ)

Отдельно необходимо сказать о последней пластине ускорителя, если "+" подключается к самой верхней пластине, то к нижней идет прямой провод высоковольтной обмотки трансформатора, и эта пластина служит т. н. камерой перезарядки частиц, поэтому она должна быть покрыта со всех сторон диэлектриком за исключением кромок отверстий.

На выходе из ускорителя, также необходима кроме фокусирующей еще и система формирования импульсных пакетов.

С этой казалось бы непреодолимой задачей - завязать поток в узел, сохранив энергию частиц, справится только плазма - только она может создать "волновод", способный "сжать" высокоэнергетический поток частиц и сформировать из них короткие по времени пакеты.

Обратимся к профессору Юткину и его исследованиям разрядов в жидкостях:

3.1. Электрические схемы генераторов импульсов тока электрогидравлических устройств

Генератор импульсов тока (ГИТ) предназначен для формирования многократно повторяющихся импульсов тока, воспроизводящих электрогидравлический эффект. Принципиальные схемы ГИТ были предложены еще в 1950-х годах и за истекшие годы не претерпели существенных изменений, однако значительно усовершенствовались их комплектующее оборудование и уровень автоматизации. Современные ГИТ предназначены для работы в широком диапазоне напряжения (5—100 кВ), емкости конденсатора (0,1 — 10000 мкФ), запасенной энергии накопителя (10—106 Дж), частоты следования импульсов (0,1 —100 Гц).

Приведенные параметры охватывают большую часть режимов, в которых работают электрогидравлические установки различного назначения.

Выбор схемы ГИТ определяется в соответствии с назначением конкретных электрогидравлических устройств. Каждая схема генератора включает в себя следующие основные блоки: блок питания — трансформатор с выпрямителем; накопитель энергии — конденсатор; коммутирующее устройство - формирующий (воздушный) промежуток; нагрузка - рабочий искровой промежуток. Кроме того, схемы ГИТ включают в себя токоограничивающий элемент (это может быть сопротивление, емкость, индуктивность или их комбинированные сочетания). В схемах ГИТ может быть несколько формирующих и рабочих искровых промежутков и накопителей энергии. Питание ГИТ осуществляется, как правило, от сети переменного тока промышленной частоты и напряжения.

ГИТ работает следующим образом. Электрическая энергия через токоограничивающий элемент и блок питания поступает в накопитель энергии - конденсатор. Запасенная в конденсаторе энергия с помощью коммутирующего устройства - воздушного формирующего промежутка — импульсно передается на рабочий промежуток в жидкости (или другой среде), на котором происходит выделение электрической энергии накопителя, в результате чего возникает электрогидравлический удар. При этом форма и длительность импульса тока, проходящего по разрядной цепи ГИТ, зависят как от параметров зарядного контура, так и от параметров разрядного контура, включая и рабочий искровой промежуток. Если для одиночных импульсов специальных ГИТ параметры цепи зарядного контура (блока питания) не оказывают существенного влияния на общие энергетические показатели электрогидравлических установок различного назначения, то в промышленных ГИТ КПД зарядного контура существенно влияет на КПД электрогидравлической установки.

Использование в схемах ГИТ реактивных токоограничивающих элементов обусловлено их свойством накапливать и затем отдавать энергию в электрическую цепь, что в конечном счете повышает КПД.

Электрический КПД зарядного контура простой и надежной в эксплуатации схемы ГИТ с ограничивающим активным зарядным сопротивлением (рис. 3.1, а) весьма низок (30—35%), так как заряд конденсаторов осуществляется в ней пульсирующими напряжением и током. Введением в схему специальных регуляторов напряжения (магнитного усилителя, дросселя насыщения) можно добиться линейного изменения вольт-амперной характеристики заряда емкостного накопителя и тем самым создать условия, при которых потери энергии в зарядной цепи будут минимальны, а общий КПД ГИТ может быть доведен до 90 % .

Для увеличения общей мощности при использовании простейшей схемы ГИТ кроме возможного применения более мощного трансформатора целесообразно иногда использовать ГИТ, имеющий три однофазных трансформатора, первичные цепи которых соединены "звездой" или "треугольником" и питаются от трехфазной сети. Напряжение с их вторичных обмоток подается на отдельные конденсаторы, которые работают через вращающийся формирующий промежуток на один общий рабочий искровой промежуток в жидкости (рис, 3.1, б) ,

При проектировании и разработке ГИТ электрогидравлических установок значительный интерес представляет использование резонансного режима заряда емкостного накопителя от источника переменного тока без выпрямителя. Общий электрический КПД резонансных схем очень высок (до 95%), а при их использовании происходит автоматическое значительное повышение рабочего напряжения. Резонансные схемы целесообразно использовать при работе на больших частотах (до 100 Гц), но для этого требуются специальные конденсаторы, предназначенные для работы на переменном токе. При использовании этих схем необходимо соблюдать известное условие резонанса

где w — частота вынуждающей ЭДС; L — индуктивность контура; С— емкость контура.

Однофазный резонансный ГИТ (рис. 3.1, в) может иметь общий электрический КПД, превышающий 90%. ГИТ позволяет получать стабильную частоту чередования разрядов, оптимально равную либо однократной, либо двукратной частоте питающего тока (т. е, 50 и 100 Гц соответственно) при питании током промышленной частоты. Применение схемы наиболее рационально при мощности питающего трансформатора 15—30 кВт. В разрядный контур схемы вводится синхронизатор — воздушный формирующий промежуток, между шарами которого расположен вращающийся диск с контактом, вызывающим срабатывание формирующего промежутка при проходе контакта между шарами. При этом вращение диска синхронизируется с моментами пиков напряжения .

Схема трехфазного резонансного ГИТ (рис. 3.1, г) включает в себя трехфазный повышающий трансформатор, каждая обмотка на высокой стороне которого работает как однофазная резонансная схема на один общий для всех или на три самостоятельных рабочих искровых промежутка при общем синхронизаторе на три формирующих промежутка. Эта схема позволяет получать частоту чередования разрядов, равную трехкратной или шестикратной частоте питающего тока (т. е. 150 или 300 Гц соответственно) при работе на промышленной частоте. Схема рекомендуется для работы на мощностях ГИТ 50 кВт и более. Трехфазная схема ГИТ экономичнее, так как время зарядки емкостного накопителя (той же мощности) меньше, чем при использовании однофазной схемы ГИТ. Однако дальнейшее увеличение мощности выпрямителя будет целесообразно только до определенного предела .

Повысить экономичность процесса заряда емкостного накопителя ГИТ можно путем использования различных схем с фильтровой емкостью. Схема ГИТ с фильтровой емкостью и индуктивной зарядной цепью рабочей емкости (рис. 3.1, д) позволяет получать, практически любую частоту чередовании импульсов при работе на небольших (до 0,1 мкФ) емкостях и имеет общий электрический КПД около 85%. Это достигается тем, что фильтровая емкость работает в режиме неполной разрядки (до 20%), а рабочая емкость заряжается через индуктивную цепь — дроссель с малым активным сопротивлением — в течение одного полу-периода в колебательном режиме, задаваемым вращением диска на первом формирующем промежутке. При этом фильтровая емкость превышает рабочую в 15—20 раз .

Вращающиеся диски формирующих искровых промежутков сидят на одном валу и поэтому частоту чередования разрядов можно варьировать в очень широких пределах, максимально ограниченных лишь мощностью питающего трансформатора. В этой схеме могут быть использованы трансформаторы на 35—50 кВ, так как она удваивает напряжение. Схема может подсоединяться и непосредственно к высоковольтной сети.

В схеме ГИТ с фильтровой емкостью (рис, 3,1, е) поочередное подсоединение рабочей и фильтровой емкостей к рабочему искровому промежутку в жидкости осуществляется при помощи одного вращающегося разрядника — формирующего промежутка . Однако при работе такого ГИТ срабатывание вращающегося разрядника начинается при меньшем напряжении (при сближении шаров) и заканчивается при большем (при удалении шаров), чем это задано минимальным расстоянием между шарами разрядников. Это приводит к нестабильности основного параметра разрядов — напряжения, а следовательно, к снижению надежности работы генератора.

Для повышения надежности работы ГИТ путем обеспечения заданной стабильности параметров разрядов в схему ГИТ с фильтровой емкостью включают вращающееся коммутирующее устройство — диск со скользящими контактами для поочередного предварительного бестокового включения и выключения зарядного и разрядного контуров.

При подаче напряжения на зарядный контур генератора первоначально заряжается фильтровая емкость. Затем вращающимся контактом без тока (а значит, и без искрения) замыкается цепь, на шарах формирующего разрядника возникает разность потенциалов, происходит пробой и рабочий конденсатор заряжается до напряжения фильтровой емкости. После этого ток в цепи исчезает и контакты вращением диска размыкаются вновь без искрения. Далее вращающимся диском (также без тока и искрения) замыкаются контакты разрядного контура и напряжение рабочего конденсатора подается на формирующий разрядник, происходит его пробой, а также пробой рабочего искрового промежутка в жидкости. При этом рабочий конденсатор разряжается, ток в разрядном контуре прекращается и, следовательно, контакты вращением диска могут быть разомкнуты вновь без разрушающего их искрения. Далее цикл повторяется с частотой следования разрядов, задаваемой частотой вращения диска коммутирующего устройства.

Использование ГИТ этого типа позволяет получать стабильные параметры неподвижных шаровых разрядников и осуществлять замыкание и размыкание целей зарядного и разрядного контуров в бестоковом режиме, тем самым улучшая все показатели и надежность работы генератора силовой установки.

Была разработана также схема питания электрогидравлических установок, позволяющая наиболее рационально использовать электрическую энергию (с минимумом возможных потерь). В известных электрогидравлических устройствах рабочая камера заземлена и поэтому часть энергии после пробоя рабочего искрового промежутка в жидкости практически теряется, рассеиваясь на заземлении. Кроме того, при каждом разряде рабочего конденсатора на его обкладках сохраняется небольшой (до 10% от первоначального) заряд.

Опыт показал, что любое электрогидравлическое устройство может эффективно работать по схеме, в которой энергия, запасенная на одном конденсаторе С1, пройдя через формирующий промежуток ФП, поступает на рабочий искровой промежуток РП, где в большей своей части расходуется на совершение полезной работы электрогидравлического удара. Оставшаяся неизрасходованной энергия поступает на второй незаряженный конденсатор С2, где и сохраняется для последующего использования (рис. 3.2). После этого энергия дозаряженного до требуемого значения потенциала второго конденсатора С2, пройдя через формирующий промежуток ФП, разряжается на рабочий искровой промежуток РП и вновь неиспользованная часть ее попадает теперь уже на первый конденсатор С1 и т. д.

Поочередное подсоединение каждого из конденсаторов то в зарядную, то в разрядную цепь производится переключателем П, в котором токопроводящие пластины А и В, разделенные диэлектриком, поочередно подсоединяются к контактам 1—4 зарядного и разрядного контуров.

Колебательный характер процесса способствует тому, что переход энергии при разряде одного конденсатора на другой совершается с некоторым избытком (для заряжаемого конденсатора), что также положительно сказывается на работе этой схемы.

Для некоторых частных случаев указанную схему можно построить таким образом, чтобы после каждой подзарядки конденсатора (например, С1) энергией, "оставшейся" от предыдущего разряда на него конденсатора С2, последующий разряд конденсатора С1 шел через рабочий промежуток на землю, не поступая на подзарядку конденсатора С2, Такая работа будет эквивалентна работе сразу на двух режимах, что может быть эффективно использовано на практике (в технологических процессах дробления, разрушения, измельчения и др.).

Краткие выдержки из работ профессора Юткина: разряд напряжением 30 кВ с максимальным током в жидкости на основе воды, при минимальном обьеме жидкости и при минимальном времени разряда дает нам плазму с температурой до 1700 °С, при этом потенциальная энергия - напряжение переходит в кинетическую энергию плазменной струи. КПД такого перехода по Юткину может быть выше 90%. Ни один тепловой двигатель таких результатов не дает.

При соответствующей конструкции плазменной камеры можно добиться значительного кинетического эффекта, (при бурении скорость струи - сверхзвуковая) устойчивости процесса плазмообразования, что и применяется в промышленности, например при бурении особо твердых пород, электроштамповке.

Применительно к нашей теме мы имеем плазменный генератор - реактивный импульсный двигатель без дополнительных механических частей (формирователь импульсов также можно сделать электронный), а если применить камеру плазмообразования в виде плоского цилиндра, то мы получим устойчивые долгоживущие плазменные структуры-тороиды (по аналогии с дымовыми кольцами у курильщиков).

Тороид, вращаясь изнутри-наружу относительно стенок камеры плазмообразования, создает замкнутый в кольцо круглый волновод, который и может "замкнуть" в себе, сохранить кинетическую энергию потока частиц.

Осталось разместить плазменные ячейки напротив 6 выходных отверстий последней пластины ускорителя.

Плазмогенераторы собраны на отдельной текстолитовой плите, плита подвешена к корпусу на демпфирующих амортизаторах из резиновых ремней типа ГРМ, двигается вверх-вниз около 1,5 см, точек подвески 8.

Все ячейки плазмообразования соединены через магнитные шайбы (магнит из стальной пластины 2 мм, намагниченной, например устройством для намагничивания отверток на рисунке синим цветом) с помощью проводящих дорожек на текстолите (на рисунке чёрным цветом) с обратным проводом обмотки трансформатора от печки СВЧ (MOT – microwave oven transformator: в и-нете можно найти про них больше информации), на центральные иглы (на рисунке красным цветом) напряжение подается через распределительный промежуточный разрядник.

Размер камеры плазмообразования равен отверстию последней пластины ускорителя (5,5см). Высота и выходное отверстие камеры равны 2 см. Длина иглы 9 мм от конца иглы до шайбы, конец иглы спилен под прямым углом, игла от обычного шприца.

Предполагаемая схема подключения МОТ, который включается в режиме увеличения напряжения (выводы 1 и 2 – на выход конвертора 12-220В, входной диод на 300В с максимальным током; 3 - на распределительный промежуточный разрядник и далее на центральные иглы, выходной диод на 5 кВ; 4 – на магнитные шайбы через текстолит)

Как плазмообразующее вещество, можно использовать 15% спиртовый раствор с добавкой 0,1% соды в качестве ионизирующей добавки. Это даст возможность использовать эффект МГД генерации для подзарядки батареи. Для тех же целей обратный электрод-шайба должен быть магнитным. Спиртовый раствор подается в камеру через центральную иглу (у Гребенникова поток смеси на иглу регулировался забитым в подводящую трубку от систем переливания крови ватным шариком, чтобы были отдельные капли, но часто, доп. регулировка - пережимным роликом от той же системы), которая служит еще и электродом. Образуется плазменный тороид на выходе из камеры плазмообразования.

Плазмообразование проходит в импульсном режиме, поэтому пластик типа текстолита вполне выдержит нагрузки.

В аппарате предусмотрено создание магнитной системы из набора постоянных магнитов от динамиков по расстоянию между пластинами, аналогично строению Земли на первом рисунке - мы получим почти замкнутую систему аналогично облакам Вернова, а поместив по периметру аппарата систему из связанных и перекрывающихся катушек, как у статора электродвигателя, мы получим еще и систему регенерации электричества, т.к. тороиды, образующие оболочку, тоже несут заряд (импульсный режим создания плазменных тороидов вызывает ЭДС в окружающих катушках).

Магниты магнитной системы - набор магнитов от динамиков, по возможности, располагаются на каждой пластине (чем сильней магнит, тем лучше), их роль - создать магнитную систему, магнитную «ось» аппарата по аналогии с планетой, у всех магнитов северный полюс сверху. Магниты на пластинах расположены равносторонним треугольником, размер подбирается исходя из расстояния между пластинами. На каждой следующей пластине этот треугольник из магнитов поворачивается на 60°, чтобы поток частиц начал закручиваться. Если есть небольшие магниты, например от китайских игрушек звуковые головки, их можно расположить кольцом – вполне удобно на тех пластинах, где нету места для больших магнитов. Также подойдут и мощные магнитные пластины от компьютерных жёстких дисков.

ГЛАВНОЕ УСЛОВИЕ ОДНО - СОЗДАТЬ МАГНИТНУЮ ОСЬ С МИНИМАЛЬНЫМИ ПЕРЕПАДАМИ НАПРЯЖЕНННОСТИ ПОЛЯ ПО ВЫСОТЕ МАГНИТНОГО СТОЛБА.

Жалюзи конструктивно представляют собой обычные ВЕЕРА, собранные из плоских удлинённых элементов, которые раскрываются и закрываются тросиком. Лепестки вееров по краям имеют выступы-крючки, которые не позволяют лепесткам раскрываться с появлением зазоров между лепестками. Ближе к оси веера находится тросик – "рубашка" крепится к первому лепестку, центральная "жила" тросика крепится к последнему лепестку веера, и между первой и последней лепестками на "жилу" тросика надета пружина на сжатие. Так, что если тросик ослабляется, то лепестки веера раскрываются. Всего имеем четыре веера. Четыре оси - для каждого веера, зафиксированы вертикально по углам платформы, что очень хорошо видно на рисунке. Их задача – перекрывание струй для регулировки наклона платформы.

Система жалюзи изготовлена из немагнитной нержавейки, с них же снимается напряжение для подзарядки аккумулятора (т.к. плазмогенераторы работают по кругу, то в каждый момент времени на противоположных жалюзи имеется разность потенциалов и в итоге получается "переменка" на выходе).

Наглядно аппарат можно представить так.

Справа от кабины пилота на разрезе виден набор пластин ускорителя, дисковые наборные элементы магнитной системы, ячейки плазменных генераторов с жалюзи-токосьемниками.

По ребру корпуса по периметру крепятся катушки системы съема напряжения.

ОПИСАНИЕ РАБОТЫ:

При подаче питания по схеме питания на пластины ускорителя, аппарат плавно поднимется в воздух на высоту 0,3-0,5 м и зависнет неподвижно. Сила тяжести будет скомпенсирована работой ускорителей, потоком частиц из него.

При включении ячеек плазменных генераторов начнется формирование тороидов, которые также начнут образовывать кокон, вращаясь по линиям силовых полей магнитной системы. Система катушек на поверхности корпуса получит питание, протекающий ток начнет вращать всю плазменную оболочку вокруг корпуса, она приобретет вытянутую, дисковидную форму.

При этом аппарат за счет реактивной силы выбрасываемых тороидов резко поднимется вверх.

Дальнейшее управление высотой и направлением полета регулируется скоростью прохождения импульсов в плазменных ячейках и положением жалюзи-токосьемов.

Аппараты такого типа могут быть построены на небольшой территории, при минимуме оборудования и затрат. В перспективе при доработке возможны полеты в космос.

Форма аппарата выбрана такой исходя из главной опасности подобного двигателя-движителя - "мягкий" рентген, излучаемый пластинами под углом 45° к плоскости пластин. При такой форме кабину можно экранировать.

Итак мы применили в своей конструкции ряд технических инноваций, которые я излагаю здесь. А вот вероятное описание конструктива по Гребенникову. К сожалению автор не оставил точных данных. Нами на "МАТРИКСЕ" уже предпринимались попытки воссоздать конструкцию Гребенникова, но они были неполными, не учитывали всех факторов.

Корпус-основание - представляет из себя коробку из многослойной фанеры с открытой нижней стороной, в которой и размещается все оборудование:

Виктор Степанович Гребенников - ученый-естествоиспытатель, профессиональный энтомолог, художник и просто всесторонне развитый человек с широким спектром интересов.

Многим он известен как первооткрыватель эффекта полостных структур (ЭПС). Но далеко не все знакомы с его другим открытием, также заимствованным из числа сокровенных тайн живой Природы.

Еще в 1988 г. им были обнаружены антигравитационные эффекты хитиновых покровов некоторых насекомых. Но наиболее впечатляющий сопутствующий феномен данного явления - это феномен полной или частичной невидимости или искаженного восприятия материального объекта, находящегося в зоне компенсированной гравитации.

На основе этого открытия, с использованием бионических принципов, автор сконструировал и построил антигравитационную платфому, а также практически разработал принципы управляемого полета со скоростью до 25 км/мин. С 1991-92 года устройство использовалось автором как средство быстрого передвижения.

Многое описано им в замечательной книге "Мой мир" (В ней он собирался описать и подробное устройство гравилёта и как его сделать. Не дали!..)

Да и смерть его вызывает вопросы. Официально - облучился неизвестными облучениями при опытах со своей платформой.

Кто из нас не мечтал о свободном полете… Без каких-либо двигателей, без сложных и дорогих устройств, без массивных машин, в которых есть лишь маленькое свободное пространство для пилота, не зависеть ни от каких погодных условиях. Как во сне, просто взять и полететь.

Когда я был маленьким, я с удивлением обнаружил, что такое, оказывается, возможно. Ну, не почти такое, конечно, устройство все-таки было необходимо, но оно отвечало почти всем требованиям. А поразила меня до глубины души статься в журнале «Техника молодежи», № 4 за 1993. В ней рассказывалось, что энтомолог Виктор Гребенников изготовил самый настоящий антиграв из крыльев бабочки. Эх… сколько бабочек тогда погибло из-за того, что я пытался обнаружить ту, что описывалась в этой статье.

В общем, предлагаю вам эту заметку из журнала плюс еще небольшую информацию для размышления:

Летом 1988 года, разглядывая в микроскоп хитиновые покровы насекомых, перистые их усики, тончайшие по структуре чешуйки крыльев бабочки, ажурные с радужным переливом крылья златоглазок и прочие Патенты Природы, я заинтересовался необыкновенно ритмичной микроструктурой одной из довольно крупных деталей. То была чрезвычайно упорядоченная, будто выштампованная на каком-то сложном автомате, композиция. На мой взгляд, такая ни с чем несравнимая ячеистость явно не требовалась ни для прочности этой детали, ни для ее украшения.

Ничего подобного, даже отдаленно напоминающего столь непривычный удивительный микроузор, я не наблюдал ни в природе, ни в технике или искусстве. Оттого, что он объемно многомерен, повторить его на плоском рисунке или фото мне до сих пор не удалось. Зачем понадобилась такая структура в нижней части надкрыльев? Тем более что почти всегда она спрятана от взора и нигде, кроме как в полете, ее не разглядишь.

Я заподозрил: не волновой ли это маяк, специальное устройство, испускающее некие волны, импульсы? Если так, то «маяк» должен обладать «моим» эффектом многополостных структур. В то поистине счастливое лето насекомых этого вида было очень много, и я ловил их вечерами на свет.

Положил на предметный столик микроскопа небольшую вогнутую хитиновую пластинку, чтобы еще раз рассмотреть ее странно-звездчатые ячейки при сильном увеличении. Полюбовался очередным шедевром Природы-ювелира и почти безо всякой цели положил было на нее пинцетом другую точно такую же пластинку с необыкновенными ячейками на одной из ее сторон.

Но не тут-то было: деталька вырвалась из пинцета, повисела пару секунд в воздухе над той, что на столике микроскопа, немного повернулась по часовой стрелке, съехала - по воздуху! - вправо, повернулась против часовой стрелки, качнулась и лишь тогда быстро и резко упала на стол. Что я пережил в тот миг - читатель может лишь представить…

Придя в себя, я связал несколько «панелей» проволочкой, это удалось не без труда, и то лишь тогда, когда я взял их вертикально. Получился многослойный «хитиноблок». Положил его на стол. На него не мог упасть даже такой сравнительно тяжелый предмет, как большая канцелярская кнопка, что-то как бы обивало ее вверх, а затем в сторону. Я прикрепил кнопку сверху к «блоку» - и тут начались столь несообразные, невероятные вещи (в частности, на какие-то мгновения кнопка начисто исчезала из вида), что я понял это не только сигнальный маяк, но и более хитрое устройство, работающее с целью облегчения насекомому полета.

И опять у меня захватило дух, и опять от волнения все предметы вокруг меня поплыли, как в тумане, но я, хоть с трудом, все-таки взял себя в руки и часа через два смог продолжить работу.

Вот с этого примечательного случая, собственно, все и началось. А закончилось сооружением моего пока неказистого, но сносно работающего гравитоплана.



Многое, разумеется, еще нужно переосмыслить, проверить, испытать. Я, конечно же, расскажу когда-нибудь читателю и «тонкостях» работы моего аппарата, и о принципах его движения, расстояниях, высотах, скоростях, об экипировке и обо всем остальном. А пока - о первом моем полете. Он был крайне рискованный, я совершил его в ночь с 17 на 18 марта 1990 года, не дождавшись летнего сезона и поленившись отъехать в безлюдную местность.

Неудачи начались еще до взлета. Блок-панели правой части несущей платформы заедало, что следовало немедленно устранить, но я этого не сделал. Поднимался прямо с улицы нашего Краснообска (он расположен неподалеку от Новосибирска), опрометчиво полагая, что во втором часу ночи все спят и меня никто не видит. Подъем начался вроде бы нормально, но через несколько секунд, когда дома с редкими светящимися окнами ушли вниз и я был метрах в ста над землей, почувствовал себя дурно, как перед обмороком. Тут какая-то мощная сила будто вырвала у меня управление движением и неумолимо потащила в сторону города.

Влекомый этой неожиданной, не поддающейся управлению силой, я пересек второй круг девятиэтажек жилой зоны, перелетел заснеженное неширокое поле, наискосок пересек шоссе Новосибирск - Академгородок, Северо-Чемской жилмассив… На меня надвигалась - и быстро! - темная громада Новосибирска, и вот уже почти рядом несколько «букетов» заводских высоченных труб, многие из которых, хорошо помню, медленно и густо дымили: работала ночная смена… Нужно было что-то срочно предпринимать. Аппарат выходил из повиновения.

Все же я сумел с грехом пополам сделать аварийную перенастройку блок-панелей. Горизонтальное движение стало замедляться, но тут мне снова стало худо, что в полете совершенно недопустимо. Лишь с четвертого раза удалось погасить горизонтальное движение и зависнуть над поселком Затулинка. Отдохнув несколько минут - если можно назвать отдыхом странное висение над освещенным забором какого-то завода, рядом с которым сразу начинались жилые кварталы, - и с облегчением убедившись, что «злая сила» исчезла, я заскользил обратно, но не сразу в сторону нашего научного агрогородка в Краснообске, а правее, к Толмачеву,- запутать след на тот случай, если кто меня заметил. И примерно на полпути к аэропорту, над какими-то темными ночными полями, где явно не было ни души, круто повернул домой…

На следующий день, естественно, не мог подняться с постели. Новости, сообщенные по телевидению и в газетах, были для меня более чем тревожными. Заголовки «НЛО над Затулинкой», «Снова пришельцы?» явно говорили о том, что мой полет засекли. Но как! Одни воспринимали «феномен» как светящийся шар или диск, причем многие «видели» почему-то не один, а… два! Поневоле скажешь: «у страха глаза велики». Другие утверждали, что летела «настоящая тарелка» с иллюминаторами и лучами…

Не исключаю я того, что некоторые затулинцы видели отнюдь не мои аварийные экзерсисы, а что-то другое, не имеющее отношения к ним. Тем более что март 1990-го был чрезвычайно «урожайным» на НЛО и в Сибири, и в Нечерноземье, и на юге страны… Да и не только у нас, но и, скажем, в Бельгии, где ночью 31 марта инженер Марсель Альферлан отснял видеокамерой двухминутный фильм о полете одного из огромных «черных треугольников». Они, по авторитетному заключению бельгийских ученых, не что иное, как «материальные объекты, причем с возможностями, которые пока не в состоянии создать никакая цивилизация».

Так уж и «никакая»? Берусь предположить, что гравитационные платформы-фильтры (или, назовем короче, блок-панели) этих «инопланетных» аппаратов были сработаны на Земле, но на более солидной и серьезной базе, чей мой, почти наполовину деревянный, аппарат. Я сразу хотел сделать платформочку треугольной - она гораздо надежней, - но склонился в пользу четырех угольной, потому что ее проще складывать. Сложенная, она напоминает чемоданчик, этюдник или «дипломат».

…Почему я не раскрываю суть своей находки - принципа действия гравитоплана?

Во-первых, потому, что для доказательств нужно иметь время и силы. Ни того, ни другого у меня нет. Знаю по горькому опыту «проталкивания» предыдущих находок, в частности, свидетельствующих о необычайном эффекте полостных структур. Вот чем закончились мои многолетие хлопоты о его научном признании: «По данной заявке на открытие дальнейшая переписка с вами нецелесообразна». Кое-кого из Вершителей Судеб науки я знаю лично и уверен, попади к такому на прием, раскрой свой «этюдник», примкни стойку, поверни рукоятки и воспари на его глазах к потолку - хозяин кабинета не среагирует, а то и прикажет выставить фокусника вон.

Вторая причина моего «нераскрытия» более объективна. Лишь у одного вида сибирских насекомых я обнаружил антигравитационные структуры. Не называю даже отряд, к которому относится уникальное насекомое: похоже, оно на грани, вымирания, и тогдашняя вспышка численности была, возможно, локальной и одной из последних. Так вот, если укажу семейство и вид - где гарантии того, что мало-мальски смыслящие в энтомологии нечестные люди, рвачи, предприниматели не кинутся по оврагам, луговинам, чтобы выловить, быть может, последние экземпляры этого Чуда Природы, для чего не остановятся ни перед чем, даже если потребуется перепахать сотни полян! Уж слишком заманчива добыча!

Надеюсь, меня поймут и простят те, кто хотел бы немедленно познакомиться с Находкой просто для интереса и без корыстного умысла, могу ли я сейчас поступить иначе ради спасения Живой Природы? Тем более что вижу: подобное вроде бы уже изобрели и другие, но не торопятся оповестить всех, предпочитая держать секрет при себе.

Так же Гребенниковым была издана книга "Мой мир" , в которой он описывает этот гравитолет.

Вопросом принципа работы платформы, после издания, задавались не только энтузиасты исследователи, но и многие другие пытливые умы, даже далекие от науки и техники. Ведь, на самом деле, столько прекрасного несет в себе жизнь и деятельность ученого В. С. Гребенникова и его наследие… И мне, как и всем другим почитателям его творчества, до сих пор хочется верить, что реальные полеты и его платформа-гравитоплан, это не вымысел.

Давайте и мы с вами зададимся вопросом поиска истины, или хотя бы попытаемся приблизиться к нему.

Существовала ли платформа? Да, похоже, что существовала. В книге приведен целый ряд фотографий этой самой платформы. Энтузиасты-искатели провели целое расследование и, вроде бы даже, получили в руки некоторые детали платформы, но без самой платформы, где, якобы, располагался двигательный аппарат.

И ни на одной фотографии из книги не видно основы основ - реального движителя. Почему? Ведь, фактически автор нам представил фотографии велосипеда без колес…

В отличие от красивых цветных кадров самой платформы, в книге приведены всего лишь две черно-белые фотографии с автором на платформе, одна из которых - «в полёте». Вот на них-то и обратим особое внимание.

И первый вопрос: «Как получилась фотография в полете, если Гребенников пишет, что в полете платформа невидима?» Но подлинность фоток почти не вызывает сомнений. Уже это начинает несколько настораживать… Несложные геометрические расчеты так же показывают, что платформа «в полете», висит над землей не более чем в 25 см.

Может ли быть, что эта фотография сфальсифицирована? Да, с современными машинами и программными комплексами можно изобразить все, что угодно, но в то время не все знали даже о том, что компьютеры существуют, не говоря даже о реально видевших. Значит, сфотографировано это событие было реально.

А можем ли мы сейчас, без применения сложной техники, соорудив аналогичную по виду «взлететь». Если соорудить из фанеры нижнюю панель, и прикрутить к ней черенок от лопаты с ручкой, то окажется да! Даже более того, «взлететь», подпрыгивая, мужчина может на 40–50 см. Остается лишь в нужный момент щелкнуть фотокамерой.

Все просто! Летаем все! Кстати, не забывайте полностью разгибаться на максимальной высоте, позируя для публики. Платформу подтягивайте вверх только руками, а не всем телом. А то по фоткам проникновенный взгляд сразу заподозрит неладное. Много ляпов, как раз и видно на единственных фотографиях «полета».

На левой фотографии человек стоит практически прямо: ноги, туловище. Голова наклонена, как бы он смотрит на руль. Обратите внимание на угол изгиба рук в локтевых суставах и расположение плеч.

А что на правой фотке? Это же просто очевидно! Он изогнулся, подтягивая за руль платформу под себя. При этом, центрируя ее под ноги - это сложно, необходимо смотреть вниз. Обратите внимание на плечи? Почему они так приподняты, а шея как бы вдавлена в туловище? Может она и не вдавлена совсем, а просто куртка, по инерции полетела выше человека, когда Гребенников уже «пошел на снижение»?

И, напоследок, стоит отметить, что Виктор Гребенников был энтомологом. А эта наука в то время испытывала достаточно большие проблемы, как с «рекламой», так и с новыми исследователями. И, статья про антиграв из жучков пришлась как нельзя кстати, подогрев интерес к энтомологии в целом. Расчет как раз был не на полеты, а на изучение братьев наших меньших. И это Гребенникову удалось на все 100%, с чем мы его и поздравляем!

Виктор Степанович Гребенников — энтузиаст-энтомолог, его сфера интересов — насекомые. Но однажды он сделал неожиданное открытие, о котором достаточно подробно и честно рассказал в книге «Мой мир», изданной в Новосибирске тиражом всего в одну тысячу экземпляров.

Удивительное открытие произошло летом 1988 года, когда ученый разглядывал в микроскоп хитиновые покровы майского жука. Его поразил узор на внутренней стороне крыла — это была упорядоченная, словно штампованная, композиция, напоминающая соты пчел. Понять, для чего природе надо было создавать столь изысканную структуру, было бы трудно, если бы не случайность.

Исследователь без всякой цели положил на одну пластину точно такую же с необыкновенными ячейками. И тут произошло странное: деталька вырвалась из пинцета, повисела в воздухе пару секунд, после этого плавно упала на стол. Пластины явно взаимодействовали! Виктор Степанович повторил опыт — одна пластина парила над другой!

После этого ученый скрепил проволочкой несколько крыльев, получив «хитиноблок», — и тут уже не только легкие предметы, но даже канцелярская кнопка легко зависала над «блоком», а в какой-то момент она даже начисто исчезла из вида, словно уйдя в другое измерение. Гребенников понял, что случайно натолкнулся на нечто Другое: он открыл явление антигравитации! Позже ученый назвал свое открытие эффектом полостных структур.

Гребенников внимательнейше исследовал под микроскопом структуру подложки крыла и сумел повторить ее на опытной модели. Два года потребовалось ему, чтобы из своего мольберта художника и прикрепленной к нему стойки с управлением секторами перекрытия полостных структур сделать компактную летающую платформу на одного человека.

Свой первый полет Гребенников совершил в ночь с 17 на 18 марта 1990 года с улицы ВАСХНИЛ — городка (сельхозакадемии) под Новосибирском, где он жил.

Вот как он описывает первый полет: «Поднимался прямо с улицы, полагая, что во втором часу ночи все спят и меня никто не видит. Подъем начался вроде бы нормально, но через несколько секунд, когда дома с редкими светящимися окнами ушли вниз и я был метрах в ста над землей, — почувствовал себя дурно, как перед обмороком. Тут опуститься бы, но я этого не сделал, и зря, так как какая-то мощная сила как бы вырвала у меня управление движением и тяжестью — и неумолимо потащила в сторону города».

Он пересек зону девятиэтажек, пролетел заснеженное поле, шоссе Новосибирск-Академгородок и устремился к громаде спящего города. Его несло к заводским трубам, густо дымившим в ночи.

«С величайшим трудом я сумел с грехом пополам сделать аварийную перенастройку блок-панелей, — пишет Виктор Степанович. — Горизонтальное движение стало замедляться. Лишь с четвертого раза его удалось погасить и зависнуть над Затулинкой — Кировским районом города… С облегчением убедившись, что «злая сила» исчезла, я заскользил обратно, но не в сторону ВАСХНИЛ-городка, а правее, к Толмачеву — запутать след на тот случай, если кто-то меня заметил».

На следующий день новости, сообщения по телевидению и в газетах были для испытателя более чем тревожными. Заголовки «НЛО над Затулинкой», «Снова пришельцы?» — явно говорили о том, что его полет засекли. Одни воспринимали «феномен» как светящиеся шары или диски, другие утверждали, что летела «настоящая тарелка» с иллюминаторами и лучами…

С тех пор изобретатель стал совершенствовать свой «аппарат», предпринимая подчас весьма далекие, до 400 км, путешествия в места природных заказников, где он продолжал исследовать насекомых. Как правило, полеты происходили в летнее время.

Геннадий Моисеевич Заднепровский рассказывал об этом, демонстрируя на экране снимки и самого Гребенникова, и его странного аппарата, и фото со взлетом платформы. Признаться, даже нам, уфологам, привыкшим к самым разным ситуациям и неожиданностям, трудно было осознать реальность такого открытия.

Вот как описывает свои полеты сам Гребенников:

— Знойный летний день. Дали утопают в голубовато-сиреневом мареве. Я лечу метрах в трехстах над землей, взяв за ориентир дальнее озеро — светлое вытянутое пятнышко в туманном мареве. Меж полей и перелесков вьются тропинки. Они сбегаются к грунтовым дорогам, а те, в свою очередь, тянутся туда, к автотрассе… Сейчас я в тени облака; увеличиваю скорость — мне это очень легко сделать — и вылетаю из тени… Меня держат в воздухе не восходящие потоки, у меня нет крыльев; в полете я опираюсь ногами на плоскую прямоугольную платформочку, чуть больше крышки стула — со стойкой и двумя рукоятками, за которые я держусь и с помощью которых управляю аппаратом. Фантастика? Да как сказать…

— Меня снизу не видно: даже при очень низком полете я большей частью совсем не отбрасываю тени. Но все-таки, как я после узнал, люди изредка кое-что видят на этом месте небосвода: либо светлый шар или диск, либо подобие вертикального или косого облачка с резкими краями, движущегося, по их свидетельствам, как-то «не по облачному». Большей же частью люди ничего не видят, и я пока этим доволен — мало ли чего. Тем более что пока не установил, от чего зависит «видимость-невидимость». И поэтому, сознаюсь, старательно избегаю в этом состоянии встречаться с людьми, для чего далеко-далеко облетаю города и поселки, а дороги да тропки пересекаю на большой скорости, лишь убедившись, что на них никого нет.

— Увы, природа сразу поставила мне свои жесткие ограничения: смотреть-то смотри, а фотографировать нельзя. Так и тут: не закрывался затвор, а взятые с собою пленки — одна кассета в аппарате, другая в кармане — оказались сплошь и жестко засвеченными. При этом почти все время обе руки заняты, лишь одну можно на две-три секунды освободить».

Хочется цитировать Гребенникова еще и еще, но любой, кто знаком с интернетом, вполне может прочитать подробности и комментарии, увидеть фотографии устройства на ряде сайтов. Кстати, была подсчитана средняя скорость полета на платформе — до 1200 км в час. Как у реактивного самолета, и при этом никаких неприятных ощущений! Фантастика!

Судьба открытия Гребенникова незавидна. В Новосибирске активно действовал так называемый комитет по борьбе с лженаукой, и ученого сразу и безоговорочно зачислили в шарлатаны. Тем паче что естествоиспытатель имел образование лишь в объеме десятилетки. Когда надо было учиться, он сидел в сталинских лагерях как сын «врагов народа».

А весной 2001 года из-за перенесенного инсульта ученого не стало… Сейчас многие энтузиасты по его записям пробуют восстановить «Антигравитационную платформу Гребенникова» — такое наименование получил его аппарат.

Виктор Степанович Гребенников -энтузиаст-энтомолог, его сфера интересов - насекомые. Но однажды он сделал неожиданное открытие, о котором достаточно подробно и честно рассказал в книге «Мой мир», изданной в Новосибирске тиражом всего в одну тысячу экземпляров.

Удивительное открытие произошло летом 1988 года, когда ученый разглядывал в микроскоп хитиновые покровы майского жука. Его поразил узор на внутренней стороне крыла - это была упорядоченная, словно штампованная, композиция, напоминающая соты пчел. Понять, для чего природе надо было создавать столь изысканную структуру, было бы трудно, если бы не случайность.


Исследователь без всякой цели положил на одну пластину точно такую же с необыкновенными ячейками. И тут произошло странное: деталька вырвалась из пинцета, повисела в воздухе пару секунд, после этого плавно упала на стол. Пластины явно взаимодействовали! Виктор Степанович повторил опыт - одна пластина парила над другой!

После этого ученый скрепил проволочкой несколько крыльев, получив «хитиноблок», - и тут уже не только легкие предметы, но даже канцелярская кнопка легко зависала над «блоком», а в какой-то момент она даже начисто исчезла из вида, словно уйдя в другое измерение. Гребенников понял, что случайно натолкнулся на нечто Другое: он открыл явление антигравитации! Позже ученый назвал своё открытие эффектом полостных структур.



Гребенников внимательнейше исследовал под микроскопом структуру подложки крыла и сумел повторить ее на опытной модели. Два года потребовалось ему, чтобы из своего мольберта художника и прикрепленной к нему стойки с управлением секторами перекрытия полостных структур сделать компактную летающую платформу на одного человека.

Свой первый полет Гребенников совершил в ночь с 17 на 18 марта 1990 года с улицы ВАСХНИЛ -городка (сельхозакадемии) под Новосибирском, где он жил.

Вот как он описывает первый полет: «Поднимался прямо с улицы, полагая, что во втором часу ночи все спят и меня никто не видит. Подъем начался вроде бы нормально, но через несколько секунд, когда дома с редкими светящимися окнами ушли вниз и я был метрах в ста над землей, - почувствовал себя дурно, как перед обмороком. Тут опуститься бы, но я этого не сделал, и зря, так как какая-то мощная сила как бы вырвала у меня управление движением и тяжестью - и неумолимо потащила в сторону города».

Он пересек зону девятиэтажек, пролетел заснеженное поле, шоссе Новосибирск-Академгородок и устремился к громаде спящего города. Его несло к заводским трубам, густо дымившим в ночи.


«С величайшим трудом я сумел с грехом пополам сделать аварийную перенастройку блок-панелей, - пишет Виктор Степанович. - Горизонтальное движение стало замедляться. Лишь с четвертого раза его удалось погасить и зависнуть над Затулинкой - Кировским районом города... С облегчением убедившись, что „злая сила" исчезла, я заскользил обратно, но не в сторону ВАСХНИЛ-городка, а правее, к Толмачеву - запутать след на тот случай, если кто-то меня заметил».



На следующий день новости, сообщения по телевидению и в газетах были для испытателя более чем тревожными. Заголовки «НЛО над Затулинкой», «Снова пришельцы?» - явно говорили о том, что его полет засекли. Одни воспринимали «феномен» как светящиеся шары или диски, другие утверждали, что летела «настоящая тарелка» с иллюминаторами и лучами...

С тех пор изобретатель стал совершенствовать свой «аппарат», предпринимая подчас весьма далекие, до 400 км, путешествия в места природных заказников, где он продолжал исследовать насекомых. Как правило, полеты происходили в летнее время.



Геннадий Моисеевич Заднепровский рассказывал об этом, демонстрируя на экране снимки и самого Гребенникова, и его странного аппарата, и фото со взлетом платформы. Признаться, даже нам, уфологам, привыкшим к самым разным ситуациям и неожиданностям, трудно было осознать реальность такого открытия.

Полеты Гребенникова

Вот как описывает свои полеты сам Гребенников.

«Знойный летний день. Дали утопают в голубовато-сиреневом мареве. Я лечу метрах в трехстах над землей, взяв за ориентир дальнее озеро - светлое вытянутое пятнышко в туманном мареве. Меж полей и перелесков вьются тропинки. Они сбегаются к грунтовым дорогам, а те, в свою очередь, тянутся туда, к автотрассе... Сейчас я в тени облака; увеличиваю скорость - мне это очень легко сделать - и вылетаю из тени... Меня держат в воздухе не восходящие потоки, у меня нет крыльев; в полете я опираюсь ногами на плоскую прямоугольную платформочку, чуть больше крышки стула - со стойкой и двумя рукоятками, за которые я держусь и с помощью которых управляю аппаратом. Фантастика? Да как сказать...

Меня снизу не видно: даже при очень низком полете я большей частью совсем не отбрасываю тени. Но все-таки, как я после узнал, люди изредка кое-что видят на этом месте небосвода: либо светлый шар или диск, либо подобие вертикального или косого облачка с резкими краями, движущегося, по их свидетельствам, как-то „не по облачному". Большей же частью люди ничего не видят, и я пока этим доволен - мало ли чего. Тем более что пока не установил, от чего зависит „видимость-невидимость". И поэтому, сознаюсь, старательно избегаю в этом состоянии встречаться с людьми, для чего далеко-далеко облетаю города и поселки, а дороги да тропки пересекаю на большой скорости, лишь убедившись, что на них никого нет.

Увы, природа сразу поставила мне свои жесткие ограничения: смотреть-то смотри, а фотографировать нельзя. Так и тут: не закрывался затвор, а взятые с собою пленки - одна кассета в аппарате, другая в кармане - оказались сплошь и жестко засвеченными. При этом почти все время обе руки заняты, лишь одну можно на две-три секунды освободить».



Хочется цитировать Гребенникова ещё и ещё, но любой, кто знаком с интернетом, вполне может прочитать подробности и комментарии, увидеть фотографии устройства на ряде сайтов. Кстати, была подсчитана средняя скорость полета на платформе - до 1200 км в час. Как у реактивного самолета, и при этом никаких неприятных ощущений! Фантастика!

Судьба открытия Гребенникова незавидна. В Новосибирске активно действовал так называемый комитет по борьбе с лженаукой, и ученого сразу и безоговорочно зачислили в шарлатаны. Тем паче что естествоиспытатель имел образование лишь в объёме десятилетки. Когда надо было учиться, он сидел в сталинских лагерях как сын «врагов народа».

А весной 2001 года из-за перенесенного инсульта ученого не стало... Сейчас многие энтузиасты по его записям пробуют восстановить «Антигравитационную платформу Гребенникова» - такое наименование получил его аппарат.

Здравствуйте! Меня зовут AWM . Это интернет имя. А по-простому Саша. Мне 51 год, ([email protected]), можно и Александром Валерьевичем. Темой платформы В.С. Гребенникова интересуюсь с тех пор как впервые прочитал в инете о гравилете В. С. Гребенникова . Собирался, собирался и наконец собрался сделать себе платформу аля Гребенников ... Спросите почему многоточие - потому как начал длинную историю. Приглашаю вас в мир делания чего-то такого, чего еще нет ни где и ни у кого!
Начнем пожалуй! Спросите с чего - с оригинальных фотографий и инфы из инета (Антигравитационная платформа Гребенникова - Независимое расследование 2)!

Ну вот снова пишу. Хочется задеть один вопрос - а зачем все это надо и вообще правда ли это что платформа может летать! В интернете по этому поводу пятьдесят на пятьдесят - ну и конечно есть крайности.

Я полагаю что у Виктора Степановича платформа была такая как он пишет. И этому есть достаточно веские доводы чтобы делать такие платформы для широкого круга людей. Ну или хотя бы заниматься этой темой как бы с научной точки зрения что-ли! Слишком глубокий пласт знаний и эффектов кроется за вроде бы простой и изящной конструкцией! Начну с подсказок явно оставленных В.С. Г. - это маленький рисунок на котором видно только набалдашник в виде почти компаса ручку переключателя крупного тумблера и т. д. подсказка это тумблер т.е. ручка от него и достаточно крупных размеров. А началось все с этого станка - вернее со светильника на переднем плане. Это как положено что то делаешь включаешь светильник а там пшик из тумблера нет света вот и у меня тоже случилось.


Достал из корпуса тумблер - прозвонил не работает. Запасного такого же нет пришлось разбирать и пробовать починить. Разобрал а там внутри караул - вы наверное не раз видели сгоревшие контакты. Все бы ничего если бы была замена а тут подумалось а откуда такие токи что плавятся латунные контакты. Вытащил я их от туда и засунул под микроскоп. А там - чудеса да и только! Вот он супер пупер агрегатище! 1958 год выпуска. Но в 2012 году уже с моими небольшими дополнениями.


Микроскоп.

Там за микроскопом спят наши кошки - вот любят они мой стол. Это Рыжка и Серка Рыжкина дочь! Хочу показать еще один экземпляр из тумблерной братии. Это однополюсный тумблер пост. тока на 50 ампер. Он имет непосредственное отношение к вопросу о платформе. Видно подгоревший контакт с достаточно большим пятном испарения материала контакта. Это я его так испытывал. На токах менее 10 ампер. Но эррозия присутствует. И отчего же это - задал я себе вопрос! И сам же себе на него ответил - от случайного совпадения условий - так скажем везение. Дело в том что в ручке управления тумблером стоит пластиковая линза с фосфорентом под ней! Излучение фосфоресцирующей вставки послужило разгонным импульсом для электричества и плюс моя статика. Это типа напряжения накачки в устройствах СЕ. При наблюдении в микроскоп в каверне испарения много чего интересного можно наблюдать. Но уже того что можно понять и без вооружения глаза достаточно чтобы попытаться применить сей эффект. Я полагаю В.С.Г. можно пополнить копилку его открытий.



Вот еще один представитель многочисленной тумблерной братии! По всей вероятности ручка от него послужила В.С.Г. прототипом! К стати - в прямоугольную часть - средней части контактной группы вписывается равносторонний треугольник это мерность корень из трех попалам. Вот именно такой тумблер и сделал пшик во время работы! Вот и еще одно число 0.866…. А если рассматривать эти маленькие детальки в микроскоп при помощи металлографического окуляра там очень много интересного - про серебряное покрытие, про мерность пирамид,про египетский анкх,про трости египетских жрецов - но и про то с какой субстанции начинается процесс генерации подьемной силы в платформе. Это темнокоричневые пятна углеводородов и радужные цвета побежалости в местах испарения контактов. Ни один металлообрабатывающий станок не может работать без масла. Мои тоже не исключение! Не помажеш не поедеш! Гласит пословица вот и капаеш на инструмент всегда немного при работе станка.И инструмент и материал во время работы греются и масло испаряется создавая вокруг крутящейся фрезы облачко масляного тумана. И светильник греется от лампочки и этот туман как правило попадает и в его пространство а у тумблера есть полости которые связывают его внутренний объем с внешним пространством. Масляный туман очень мелкодисперсный попадает и туда и в конце концов наступает пшик и нет контактов которые испарились под действием силы тока намного превышающий допустимый. Но конечно для такой ситуации нужны условия так скажем везение что ли. Да и еще- если бы этот ток имел возможность куда то стекать, то тумблер был бы надежней надежного!

Добрый День!Интересная штука -понимание и осмысливание того что видишь глазами.

Вот заглавие форума - Платформа Гребенникова. Есть куча фотоматериалов по платформе в разных ракурсах. Из этих материалов (фото) видно из чего она состоит - ну хоть снаружи и это уже масса инфы для реинжинеринга. А обсуждаются и притом почти всегда - умные высоконаучные на слух и прочтение слова не имеющие к платформе практически именно практически никакого отношения.
Имея за плечами 30 летний опыт в сфере изготовления (а это изготовление станков инструмента радио дело и т.д. и т.п.) и размышляя над высказываниями и идеями форумчан относительно того как практически реализовать то или иное невольно встаешь в ступор - надо чтобы была супер мощная экспериментальная база плюс экспериментальное производство и еще масса времени на изготовление поиск материалов отладку и т.д. и т.п.

А то что изображено на фотографиях платформы по плечу одному человеку. В.С.Г. писал о двухлетней работе по изготовлению по поиску нужного материала (а это именно знание того что нужно а не перебирание всего что попадает под руки). В моем случае все происходит также - около года прошло в поисках и собирании всевозможныж железок и это при том что их и так много в моем хозяйстве. Лето ушло на изготовление телескопической стойки и то без обвески мелких деталей. При всем том что мои условия почти идеальны в моем распоряжении целая мастерская плюс оборудование промышленное. В девяностые годы - . . в о времена когда Виктор Степанович делал свою платформу этого у меня не было и не было не у кого из тех кто мне знаком и также был увлечен собиранием железок. Были только мечты о чем то таком. И что то либо изготовить или найти материал было крайне сложно - впрочем как и сейчас - всегда все везде за деньги или универсальную валюту - спирт. Ведь у всех масса своих дел и планов и приходя к кому то с просьбой - ломаешь их планы...

Я не думаю что В.С.Г. собирал свою платформу в каких то других условиях они везде примерно одинаковы - вот изходя из этих размышлений можно утверждать что платформа это (даже технически)очень простое устройство и всех это вводит в заблуждение когда в голове происходит прикидка а как это работает и автоматически уводит в другую сторону от правильных выводов. Платформа приводится в действие без электричества - как только приходишь к такому выводу все сразу проясняется. И в сотаве платформы нет ни дного жука или даже части от него - жук это средство размышления над тем какие формы (треугольники: фигура которая в сакральной геометрии называется весцика песцис а также части ее: пятиугольник и т.д.) имеет пространство в котором он существует и благодаря этому имет те формы (жук) которые позволяют ему летать когда он живой...

Загрузка...
Top